- c++读取图片_四、faster-rcnn源码阅读:数据流读取
weixin_39719078
c++读取图片img标签读取本地图片os如何读取图片torchdataloader数据并行
数据读取在faster-rcnn源码里是比较简单的部分,但也是非常重要的部分,不了解数据,就不可能了解算法。另一方面,由于python环境碎片话化,源码调用的库在你的电脑上如果碰巧(其实概率还蛮大,特别是windows下)不能用,完全可以用另外一种等价的方式取代。一、图片读取就是把图片转化成矩阵,等待下一个流程进一步处理。图片读取要注意不是所有都是RGB顺序读取1.cv2(OpenCV-Pytho
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- 目标检测SSD:训练自己的数据集
BigCowPeking
目标检测算法安装SSD
最近一直在搞objectdetection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti,识别速度大概是15fps.最近发现SSD(singleshotmultiboxdetector)这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部
- YOLO系列
Array902
YOLOpython深度学习
深度学习经典检测方法two-stage(两阶段):Faster-rcnn\Mask-Rcnn系列(两阶段即多了一步预选操作)one-stage(单阶段):YOLO系列(直接处理,不需要对数据进行预选)one-stage:最核心的优势:速度非常快,适合做实时监测任务!但是缺点也是有的,效果通常情况下不会太好!(速度越快效果越差,二者相互有些矛盾)mAP:效果好坏FPS:速度快慢two-stage:速
- 目标检测 Faster-RCNN
石中璇
深度学习
文章目录标题目标检测算法:Faster-RCNNR-CNNRegionProposals候选区域RCNN结构原理RCNN存在的问题用SPP-Net改进(spatialpyramidpoolinglayer空间金字塔池化)FastR-CNNFastR-CNN结构图FastR-CNN的缺陷FasterR-CNN标题目标检测算法:Faster-RCNNR-CNNRegionProposals候选区域原先
- caffe版本Faster-RCNN:py-faster-rcnn-master/lib/datasets/factory.py ->用于集成程序默认提供的数据集
a1103688841
分析:这个代码分两个部分:1)首先往__sets()字典的key中注入名字,往对应的val中注入对应的初始化函数。下次只要在__sets()字典中输入key的名字就可以执行对应的初始化函数。__sets()的具体情况如下:2)get_imdb(name)用于配套__sets()的初始化,输入__sets()中存在key,调用他对应的val进行初始化list_imdbs()用于配套__sets(),
- Multi-adversarial Faster-RCNN with Paradigm Teacher for Unrestricted Object Detection
宇来风满楼
目标检测目标检测人工智能计算机视觉算法深度学习机器学习神经网络
GRLmeans‘gradientreversedlayer’,SRMmeans‘ScaleReduceModule’.DiscriminatorsubmoduleatthemmmthblockisdenotedasDm^mm作者未提供代码
- R-C3D论文详解
ce0b74704937
论文链接:R-C3D:RegionConvolutional3DNetworkforTemporalActivityDetection代码地址(论文提供地址):http://ai.bu.edu/r-c3d/该论文借鉴图像物体检测中的Faster-RCNN的思想,文章采用3D卷积来获取视频的时序信息,然后通过类似Faster-RCNN的rpn层和roi层输出时间维度的boundingbox,也就是视
- 【Digest】YOLO系列:YOLOv1,YOLOv2,YOLOv3,YOLOv4,YOLOv5简介
gikod
YOLO
1.前言论文下载:http://arxiv.org/abs/1506.02640代码下载:https://github.com/pjreddie/darknet核心思想:将整张图片作为网络的输入(类似于Faster-RCNN),直接在输出层对BBox的位置和类别进行回归。目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile
- 学习笔记:Pytorch 搭建自己的Faster-RCNN目标检测平台
hongyuyahei
vqa学习笔记pytorch
B站学习视频up主的csdn博客1、什么是FasterR-CNN2、pytorch-gpu环境配置(跳过)3、FasterR-CNN整体结构介绍Faster-RCNN可以采用多种的主干特征提取网络,常用的有VGG,Resnet,Xception等等。Faster-RCNN对输入进来的图片尺寸没有固定,但一般会把输入进来的图片短边固定成600.4、Resnet50-主干特征提取网络介绍具体学习见:R
- MMdetection3.0 报错data[‘category_id‘] = self.cat_ids[label] IndexError: list index out of range
MZYYZT
MMdetectionpython深度学习MMdetection3.0
MMdetection3.0问题报错data[‘category_id’]=self.cat_ids[label]IndexError:listindexoutofrange痛苦,希望各位大佬看到后可以指教一下:问题:在使用MMdetection3.0训练NWPU-VHR-10数据时,使用Yolov3模型可以正常训练测试,但是当使用Faster-rcnn模型训练的时候,一直如下图所示错误。1、按照
- MMdetection3.0 问题
MZYYZT
MMdetectionpython目标检测MMdetection3.0python深度学习目标检测
MMdetection3.0问题希望各位路过的大佬指教一下:问题:1、NWPU-VHR-10有标注的数据一共650张,我将其分为了455张训练集,195张验证集。2、然后使用MMdetection3.0框架中的Faster-rcnn网络进行训练,设置训练参数batch-size=2,num_worker=2。3、那么问题来了:为什么下图中的画圈的地方不是【**/228or227】,也就是datal
- YOLO系列/20230903
lucharaar
YOLO
深度学习经典检测方法1.two-stage(分两阶段):Faster-Rcnn和Mask-Rcnn系列-------检测过程中加了预选框步骤速度通常较慢(5FPS),但是效果通常不错非常实用的通用框架Mask-Rcnn,需要了解2.one-stage(单阶段):YOLO系列------当我们想做检测任务,一个cnn网络直接做一个回归任务就可以,中间不需要加额外的补充最核心的优势:速度非常快,适合做
- 目标检测|实战总结
voice_an
1.实现ssd-keras实时目标检测算法,并制作十张图片的测试集。效果一般。ssd算法是继faster-rcnn与yolo之后的又一力作。来自UNC团队2016年发表在ECCV上。SSD最大的特点就是在较高的准确率下实现较好的检测准确度。并非为两种模型:SSD300(300*300输入图片),SSD500(512*512输入图片)。当然输入图片的尺寸越大,往往会得到更好的检测准确率,但同时也带来
- 第五章 目标检测中K-means聚类生成Anchor box(工具)
小酒馆燃着灯
目标检测深度学习工具目标检测kmeans聚类
基础理论在基于anchor的目标检测算法中,anchor一般都是通过人工设计的。例如,在SSD、Faster-RCNN中,设计了9个不同大小和宽高比的anchor。然而,通过人工设计的anchor存在一个弊端,就是并不能保证它们一定能很好的适合数据集,如果anchor的尺寸和目标的尺寸差异较大,则会影响模型的检测效果。在论文YOLOv2中提到了这个问题,作者建议使用K-means聚类来代替人工设计
- YOLO系列详解(YOLO1-YOLO5)
陈子迩
深度学习学习笔记pythonpandas机器学习
目录前言二、YOLOv1举例说明:三、YOLOv2四、YOLOv3五、YOLOv4框架原理5.4.5余弦模拟退火5.5.2DIoU-NMS六YOLOv5七、YOLOv6前言一、前言YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。YOLO官网:GitHub-pjreddie/dark
- pkl文件的简介(Python中的Pickle)
北岛寒沫
Pythonpython开发语言
文章目录Pickle模块简介Pickle模块的使用最近从Github上下载了一个预训练好的Faster-RCNN模型用于科研任务,突然对该文件的格式,.pkl文件产生了一丝疑惑,便去特意了解了一下该格式的文件的含义,下面与大家共享。Pickle模块简介.pkl是Python中pickle模块的默认文件扩展名。pickle是Python中的一个模块,它允许您序列化和反序列化Python对象结构。“序
- SSD安装及训练自己的数据集
zhang_shuai12
深度学习ssdcaffe
最近一直在搞objectdetection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti,识别速度大概是15fps.最近发现SSD(singleshotmultiboxdetector)这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部
- 在AI Studio中配置faster-rcnn pytorch环境
ForesterZz
cuda
在AIStudio中配置faster-rcnnpytorch环境AIStudio自带cuda版本faster-rcnn的pytorch版本支持AIStudio自带cuda版本AIStudio目前有两个版本的cuda(cuda9.2和cuda10),不过我从没分配到过cuda10,大部分都是cuda9.2。使用以下语句查看cuda版本。cat/usr/local/cuda/version.txtfa
- 使用mmdetection训练模型--记faster-rcnn不同backbone性能比较
hedgehogbb
工作总结深度学习目标检测pytorch
使用mmdetection训练模型一、安装采用的是直接安装,并未使用在conda中建虚拟环境。主要安装的有mmcv和mmdet,其中mmcv的安装与下载的mmdetction版本有关,参考https://mmdetection.readthedocs.io/zh_CN/v2.18.1/get_started.html#id官网安装依赖教程中的mmdetection版本和mmcv版本的对应关系安装。
- 基于Pytorch的从零开始的目标检测
金戈鐡馬
深度学习pytorch目标检测人工智能深度学习python
引言目标检测是计算机视觉中一个非常流行的任务,在这个任务中,给定一个图像,你预测图像中物体的包围盒(通常是矩形的),并且识别物体的类型。在这个图像中可能有多个对象,而且现在有各种先进的技术和框架来解决这个问题,例如Faster-RCNN和YOLOv3。本文讨论将讨论图像中只有一个感兴趣的对象的情况。这里的重点更多是关于如何读取图像及其边界框、调整大小和正确执行增强,而不是模型本身。目标是很好地掌握
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.78】引入2023年华为诺亚提出Gold-YOLO模型中Gatherand-Distribute
人工智能算法研究院
YOLO算法改进系列YOLO算法
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.79】改进损失函数为VariFocal Loss
人工智能算法研究院
YOLO算法改进系列YOLO算法目标跟踪
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- CV综述OCR任务---目录
慕一Chambers
图像分类CNN深度学习机器学习
CV综述OCR任务---目录图像任务OCR任务图像分类目标检测图像分割图像增强视频任务正文:OCR学习OCR参考资料:参考博客:典型应用常见挑战比赛经典OCR方法单字符识别方法序列识别方法tessernet文字检测模型Part(thinkaboutCV中的目标检测)faster-RCNN/YOLO/SSDCTPN(2016):ConnectionistTextProposalNetworkEAST
- 第五章 目标检测中K-means聚类生成Anchor box(工具)
小酒馆燃着灯
机器学习工具深度学习目标检测kmeans聚类
第一种做法在基于anchor的目标检测算法中,anchor一般都是通过人工设计的。例如,在SSD、Faster-RCNN中,设计了9个不同大小和宽高比的anchor。然而,通过人工设计的anchor存在一个弊端,就是并不能保证它们一定能很好的适合数据集,如果anchor的尺寸和目标的尺寸差异较大,则会影响模型的检测效果。在论文YOLOv2中提到了这个问题,作者建议使用K-means聚类来代替人工设
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.77】引入百度最新提出RT-DETR模型中AIFI模块
人工智能算法研究院
YOLO算法改进系列YOLO算法目标跟踪
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- mmdetection安装与训练
不减到100斤不吃锅包肉
深度学习pytorch深度学习
一、什么是mmdetection商汤科技(2018COCO目标检测挑战赛冠军)和香港中文大学最近开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection,支持Faster-RCNN,Mask-RCNN,Fast-RCNN等主流的目标检测框架,后续会加入Cascade-RCNN以及其他一系列目标检测框架。二、mmdetection安装本人安装环境:系统环境:Ubuntu20.0
- 安装yolo,mmlab,等工具时pycocotools报错
zRezin
YOLO深度学习人工智能计算机视觉
安装yolo的时候,因为是白板机,很多依赖都没有安装。安装yolo的依赖时候会报错。其实如果安装其他的视觉框架,例如yolov系列,mmlab,faster-rcnn等只要是用到了coco数据集的预置框架,都需要安装pycocotools。conda环境下依赖安装可能报错,可能是因为环境版本不匹配。需要手动安装报错语句如下ERROR:Couldnotbuildwheelsforpycocotool
- Faster-RCNN and Mask-RCNN框架解析
nice-wyh
pytorch目标检测深度学习机器学习
由于本人记忆力实在太差,每次学完一个框架没过多久就会忘,而且码文能力不行,人又懒,所以看到了其他人写的不错的两篇框架解析的博文,先来记录一下,就当是我写的喽Faster-rcnn详解_fasterr-cnn-CSDN博客MaskR-CNN详解_maskrcnn-CSDN博客
- Pytorch实现Faster-RCNN
*Major*
Pytorch实现Faster−RCNNPytorch实现Faster-RCNNPytorch实现Faster−RCNN基本结构![在这里插入图片描述](https://img-blog.csdnimg.cn/20200614150822116.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc