刘二大人《pytorch深度学习》 第四讲 反向传播算法

目录

示例代码: 

课后作业:


示例代码: 

import torch
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
w=torch.Tensor([1.0])#构建计算图,而非简单的矩阵运算
w.requires_grad=True#需要计算梯度

def forward(x):
    return x*w
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)**2

print("predict (before training)",4,forward(4).item())#返回遍历的值

for epoch in range(100):
    for x,y in zip(x_data,y_data):
        l=loss(x,y)  #前馈过程,l为计算出的张量
        l.backward() #反馈过程,执行后计算图释放
        print('\tgrad:',x,y,w.grad.item())
        w.data=w.data-0.01*w.grad.data#只对数值操作
        
        w.grad.data.zero_()#把权重里的梯度数据清零
    print("progress :",epoch,l.item())
print("progress (after training)",4,forward(4).item())

运行结果:

predict (before training) 4 4.0
	grad: 1.0 2.0 -2.0
	grad: 2.0 4.0 -7.840000152587891
	grad: 3.0 6.0 -16.228801727294922
progress : 0 7.315943717956543
	grad: 1.0 2.0 -1.478623867034912
	grad: 2.0 4.0 -5.796205520629883
	grad: 3.0 6.0 -11.998146057128906
progress : 1 3.9987640380859375
	grad: 1.0 2.0 -1.0931644439697266
	grad: 2.0 4.0 -4.285204887390137
	grad: 3.0 6.0 -8.870372772216797
progress : 2 2.1856532096862793
	grad: 1.0 2.0 -0.8081896305084229
	grad: 2.0 4.0 -3.1681032180786133
	grad: 3.0 6.0 -6.557973861694336
progress : 3 1.1946394443511963
	grad: 1.0 2.0 -0.5975041389465332
	grad: 2.0 4.0 -2.3422164916992188
	grad: 3.0 6.0 -4.848389625549316
progress : 4 0.6529689431190491
	grad: 1.0 2.0 -0.4417421817779541
	grad: 2.0 4.0 -1.7316293716430664
	grad: 3.0 6.0 -3.58447265625
progress : 5 0.35690122842788696
	grad: 1.0 2.0 -0.3265852928161621
	grad: 2.0 4.0 -1.2802143096923828
	grad: 3.0 6.0 -2.650045394897461
progress : 6 0.195076122879982
	grad: 1.0 2.0 -0.24144840240478516
	grad: 2.0 4.0 -0.9464778900146484
	grad: 3.0 6.0 -1.9592113494873047
progress : 7 0.10662525147199631
	grad: 1.0 2.0 -0.17850565910339355
	grad: 2.0 4.0 -0.699742317199707
	grad: 3.0 6.0 -1.4484672546386719
progress : 8 0.0582793727517128
	grad: 1.0 2.0 -0.1319713592529297
	grad: 2.0 4.0 -0.5173273086547852
	grad: 3.0 6.0 -1.070866584777832
progress : 9 0.03185431286692619
	grad: 1.0 2.0 -0.09756779670715332
	grad: 2.0 4.0 -0.3824653625488281
	grad: 3.0 6.0 -0.7917022705078125
progress : 10 0.017410902306437492
	grad: 1.0 2.0 -0.07213282585144043
	grad: 2.0 4.0 -0.2827606201171875
	grad: 3.0 6.0 -0.5853137969970703
progress : 11 0.009516451507806778
	grad: 1.0 2.0 -0.053328514099121094
	grad: 2.0 4.0 -0.2090473175048828
	grad: 3.0 6.0 -0.43272972106933594
progress : 12 0.005201528314501047
	grad: 1.0 2.0 -0.039426326751708984
	grad: 2.0 4.0 -0.15455150604248047
	grad: 3.0 6.0 -0.3199195861816406
progress : 13 0.0028430151287466288
	grad: 1.0 2.0 -0.029148340225219727
	grad: 2.0 4.0 -0.11426162719726562
	grad: 3.0 6.0 -0.23652076721191406
progress : 14 0.0015539465239271522
	grad: 1.0 2.0 -0.021549701690673828
	grad: 2.0 4.0 -0.08447456359863281
	grad: 3.0 6.0 -0.17486286163330078
progress : 15 0.0008493617060594261
	grad: 1.0 2.0 -0.01593184471130371
	grad: 2.0 4.0 -0.062453269958496094
	grad: 3.0 6.0 -0.12927818298339844
progress : 16 0.00046424579340964556
	grad: 1.0 2.0 -0.011778593063354492
	grad: 2.0 4.0 -0.046172142028808594
	grad: 3.0 6.0 -0.09557533264160156
progress : 17 0.0002537401160225272
	grad: 1.0 2.0 -0.00870823860168457
	grad: 2.0 4.0 -0.03413581848144531
	grad: 3.0 6.0 -0.07066154479980469
progress : 18 0.00013869594840798527
	grad: 1.0 2.0 -0.006437778472900391
	grad: 2.0 4.0 -0.025236129760742188
	grad: 3.0 6.0 -0.052239418029785156
progress : 19 7.580435340059921e-05
	grad: 1.0 2.0 -0.004759550094604492
	grad: 2.0 4.0 -0.018657684326171875
	grad: 3.0 6.0 -0.038620948791503906
progress : 20 4.143271507928148e-05
	grad: 1.0 2.0 -0.003518819808959961
	grad: 2.0 4.0 -0.0137939453125
	grad: 3.0 6.0 -0.028553009033203125
progress : 21 2.264650902361609e-05
	grad: 1.0 2.0 -0.00260162353515625
	grad: 2.0 4.0 -0.010198593139648438
	grad: 3.0 6.0 -0.021108627319335938
progress : 22 1.2377059647405986e-05
	grad: 1.0 2.0 -0.0019233226776123047
	grad: 2.0 4.0 -0.0075397491455078125
	grad: 3.0 6.0 -0.0156097412109375
progress : 23 6.768445018678904e-06
	grad: 1.0 2.0 -0.0014221668243408203
	grad: 2.0 4.0 -0.0055751800537109375
	grad: 3.0 6.0 -0.011541366577148438
progress : 24 3.7000872907810844e-06
	grad: 1.0 2.0 -0.0010514259338378906
	grad: 2.0 4.0 -0.0041217803955078125
	grad: 3.0 6.0 -0.008531570434570312
progress : 25 2.021880391112063e-06
	grad: 1.0 2.0 -0.0007772445678710938
	grad: 2.0 4.0 -0.0030469894409179688
	grad: 3.0 6.0 -0.006305694580078125
progress : 26 1.1044940038118511e-06
	grad: 1.0 2.0 -0.0005745887756347656
	grad: 2.0 4.0 -0.0022525787353515625
	grad: 3.0 6.0 -0.0046634674072265625
progress : 27 6.041091182851233e-07
	grad: 1.0 2.0 -0.0004248619079589844
	grad: 2.0 4.0 -0.0016651153564453125
	grad: 3.0 6.0 -0.003444671630859375
progress : 28 3.296045179013163e-07
	grad: 1.0 2.0 -0.0003139972686767578
	grad: 2.0 4.0 -0.0012311935424804688
	grad: 3.0 6.0 -0.0025491714477539062
progress : 29 1.805076408345485e-07
	grad: 1.0 2.0 -0.00023221969604492188
	grad: 2.0 4.0 -0.0009107589721679688
	grad: 3.0 6.0 -0.0018854141235351562
progress : 30 9.874406714516226e-08
	grad: 1.0 2.0 -0.00017189979553222656
	grad: 2.0 4.0 -0.0006742477416992188
	grad: 3.0 6.0 -0.00139617919921875
progress : 31 5.4147676564753056e-08
	grad: 1.0 2.0 -0.0001270771026611328
	grad: 2.0 4.0 -0.0004978179931640625
	grad: 3.0 6.0 -0.00102996826171875
progress : 32 2.9467628337442875e-08
	grad: 1.0 2.0 -9.393692016601562e-05
	grad: 2.0 4.0 -0.0003681182861328125
	grad: 3.0 6.0 -0.0007610321044921875
progress : 33 1.6088051779661328e-08
	grad: 1.0 2.0 -6.937980651855469e-05
	grad: 2.0 4.0 -0.00027179718017578125
	grad: 3.0 6.0 -0.000560760498046875
progress : 34 8.734787115827203e-09
	grad: 1.0 2.0 -5.125999450683594e-05
	grad: 2.0 4.0 -0.00020122528076171875
	grad: 3.0 6.0 -0.0004177093505859375
progress : 35 4.8466972657479346e-09
	grad: 1.0 2.0 -3.790855407714844e-05
	grad: 2.0 4.0 -0.000148773193359375
	grad: 3.0 6.0 -0.000308990478515625
progress : 36 2.6520865503698587e-09
	grad: 1.0 2.0 -2.8133392333984375e-05
	grad: 2.0 4.0 -0.000110626220703125
	grad: 3.0 6.0 -0.0002288818359375
progress : 37 1.4551915228366852e-09
	grad: 1.0 2.0 -2.09808349609375e-05
	grad: 2.0 4.0 -8.20159912109375e-05
	grad: 3.0 6.0 -0.00016880035400390625
progress : 38 7.914877642178908e-10
	grad: 1.0 2.0 -1.5497207641601562e-05
	grad: 2.0 4.0 -6.103515625e-05
	grad: 3.0 6.0 -0.000125885009765625
progress : 39 4.4019543565809727e-10
	grad: 1.0 2.0 -1.1444091796875e-05
	grad: 2.0 4.0 -4.482269287109375e-05
	grad: 3.0 6.0 -9.1552734375e-05
progress : 40 2.3283064365386963e-10
	grad: 1.0 2.0 -8.344650268554688e-06
	grad: 2.0 4.0 -3.24249267578125e-05
	grad: 3.0 6.0 -6.580352783203125e-05
progress : 41 1.2028067430946976e-10
	grad: 1.0 2.0 -5.9604644775390625e-06
	grad: 2.0 4.0 -2.288818359375e-05
	grad: 3.0 6.0 -4.57763671875e-05
progress : 42 5.820766091346741e-11
	grad: 1.0 2.0 -4.291534423828125e-06
	grad: 2.0 4.0 -1.71661376953125e-05
	grad: 3.0 6.0 -3.719329833984375e-05
progress : 43 3.842615114990622e-11
	grad: 1.0 2.0 -3.337860107421875e-06
	grad: 2.0 4.0 -1.33514404296875e-05
	grad: 3.0 6.0 -2.86102294921875e-05
progress : 44 2.2737367544323206e-11
	grad: 1.0 2.0 -2.6226043701171875e-06
	grad: 2.0 4.0 -1.049041748046875e-05
	grad: 3.0 6.0 -2.288818359375e-05
progress : 45 1.4551915228366852e-11
	grad: 1.0 2.0 -1.9073486328125e-06
	grad: 2.0 4.0 -7.62939453125e-06
	grad: 3.0 6.0 -1.430511474609375e-05
progress : 46 5.6843418860808015e-12
	grad: 1.0 2.0 -1.430511474609375e-06
	grad: 2.0 4.0 -5.7220458984375e-06
	grad: 3.0 6.0 -1.1444091796875e-05
progress : 47 3.637978807091713e-12
	grad: 1.0 2.0 -1.1920928955078125e-06
	grad: 2.0 4.0 -4.76837158203125e-06
	grad: 3.0 6.0 -1.1444091796875e-05
progress : 48 3.637978807091713e-12
	grad: 1.0 2.0 -9.5367431640625e-07
	grad: 2.0 4.0 -3.814697265625e-06
	grad: 3.0 6.0 -8.58306884765625e-06
progress : 49 2.0463630789890885e-12
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 50 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 51 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 52 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 53 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 54 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 55 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 56 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 57 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 58 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 59 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 60 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 61 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 62 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 63 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 64 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 65 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 66 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 67 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 68 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 69 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 70 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 71 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 72 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 73 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 74 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 75 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 76 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 77 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 78 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 79 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 80 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 81 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 82 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 83 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 84 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 85 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 86 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 87 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 88 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 89 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 90 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 91 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 92 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 93 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 94 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 95 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 96 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 97 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 98 9.094947017729282e-13
	grad: 1.0 2.0 -7.152557373046875e-07
	grad: 2.0 4.0 -2.86102294921875e-06
	grad: 3.0 6.0 -5.7220458984375e-06
progress : 99 9.094947017729282e-13
progress (after training) 4 7.999998569488525

课后作业:

import torch
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
w1=torch.Tensor([1.0])
w1.requires_grad=True#需要计算梯度
w2=torch.Tensor([1.0])
w2.requires_grad=True
b=torch.Tensor([1.0])
b.requires_grad=True

def forward(x):
    return w1*x**2+w2*x+b
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)**2

print("predict (before training)",4,forward(4).item())#返回遍历的值

for epoch in range(100):
    for x,y in zip(x_data,y_data):
        l=loss(x,y)  #前馈过程,l为计算出的张量
        l.backward() #反馈过程,执行后计算图释放
        print('\tgrad:',x,y,w1.grad.item(),w2.grad.item(),b.grad.item())
        w1.data=w1.data-0.01*w1.grad.data#只对数值操作
        w2.data=w2.data-0.01*w2.grad.data
        b.data=b.data-0.01*b.grad.data
        w1.grad.data.zero_()#把梯度数据清零
        w2.grad.data.zero_()
        b.grad.data.zero_()
    print("progress :",epoch,l.item())
print("progress (after training)",4,forward(4).item())

运行结果:

predict (before training) 4 20.159997940063477
	grad: 1.0 2.0 5.759999752044678 5.759999752044678 5.759999752044678
	grad: 2.0 4.0 18.53439712524414 9.26719856262207 4.633599281311035
	grad: 3.0 6.0 67.29752349853516 22.43250846862793 7.477502822875977
progress : 0 13.978261947631836
	grad: 1.0 2.0 -1.178454875946045 -1.178454875946045 -1.178454875946045
	grad: 2.0 4.0 -14.312723159790039 -7.1563615798950195 -3.5781807899475098
	grad: 3.0 6.0 -24.73125457763672 -8.243751525878906 -2.7479171752929688
progress : 1 1.887762188911438
	grad: 1.0 2.0 0.10765647888183594 0.10765647888183594 0.10765647888183594
	grad: 2.0 4.0 1.0911674499511719 0.5455837249755859 0.27279186248779297
	grad: 3.0 6.0 17.916297912597656 5.972099304199219 1.9906997680664062
progress : 2 0.9907214045524597
	grad: 1.0 2.0 -0.4545760154724121 -0.4545760154724121 -0.4545760154724121
	grad: 2.0 4.0 -5.960569381713867 -2.9802846908569336 -1.4901423454284668
	grad: 3.0 6.0 -2.0939598083496094 -0.6979866027832031 -0.23266220092773438
progress : 3 0.013532925397157669
	grad: 1.0 2.0 -0.1581895351409912 -0.1581895351409912 -0.1581895351409912
	grad: 2.0 4.0 -2.568187713623047 -1.2840938568115234 -0.6420469284057617
	grad: 3.0 6.0 7.0566558837890625 2.3522186279296875 0.7840728759765625
progress : 4 0.1536925733089447
	grad: 1.0 2.0 -0.26267051696777344 -0.26267051696777344 -0.26267051696777344
	grad: 2.0 4.0 -4.039661407470703 -2.0198307037353516 -1.0099153518676758
	grad: 3.0 6.0 2.644932746887207 0.8816442489624023 0.2938814163208008
progress : 5 0.02159157209098339
	grad: 1.0 2.0 -0.1819312572479248 -0.1819312572479248 -0.1819312572479248
	grad: 2.0 4.0 -3.2520751953125 -1.62603759765625 -0.813018798828125
	grad: 3.0 6.0 4.549635887145996 1.516545295715332 0.5055150985717773
progress : 6 0.0638863816857338
	grad: 1.0 2.0 -0.18862676620483398 -0.18862676620483398 -0.18862676620483398
	grad: 2.0 4.0 -3.519542694091797 -1.7597713470458984 -0.8798856735229492
	grad: 3.0 6.0 3.5210065841674805 1.1736688613891602 0.3912229537963867
progress : 7 0.038263849914073944
	grad: 1.0 2.0 -0.15584301948547363 -0.15584301948547363 -0.15584301948547363
	grad: 2.0 4.0 -3.2998714447021484 -1.6499357223510742 -0.8249678611755371
	grad: 3.0 6.0 3.862698554992676 1.2875661849975586 0.42918872833251953
progress : 8 0.04605074226856232
	grad: 1.0 2.0 -0.14258623123168945 -0.14258623123168945 -0.14258623123168945
	grad: 2.0 4.0 -3.310487747192383 -1.6552438735961914 -0.8276219367980957
	grad: 3.0 6.0 3.572024345397949 1.1906747817993164 0.39689159393310547
progress : 9 0.03938073292374611
	grad: 1.0 2.0 -0.12135553359985352 -0.12135553359985352 -0.12135553359985352
	grad: 2.0 4.0 -3.2174320220947266 -1.6087160110473633 -0.8043580055236816
	grad: 3.0 6.0 3.580641746520996 1.193547248840332 0.39784908294677734
progress : 10 0.039570972323417664
	grad: 1.0 2.0 -0.1049051284790039 -0.1049051284790039 -0.1049051284790039
	grad: 2.0 4.0 -3.17596435546875 -1.587982177734375 -0.7939910888671875
	grad: 3.0 6.0 3.454848289489746 1.151616096496582 0.38387203216552734
progress : 11 0.03683943301439285
	grad: 1.0 2.0 -0.08725857734680176 -0.08725857734680176 -0.08725857734680176
	grad: 2.0 4.0 -3.1137142181396484 -1.5568571090698242 -0.7784285545349121
	grad: 3.0 6.0 3.3962345123291016 1.1320781707763672 0.37735939025878906
progress : 12 0.035600028932094574
	grad: 1.0 2.0 -0.07115650177001953 -0.07115650177001953 -0.07115650177001953
	grad: 2.0 4.0 -3.064220428466797 -1.5321102142333984 -0.7660551071166992
	grad: 3.0 6.0 3.3108673095703125 1.1036224365234375 0.3678741455078125
progress : 13 0.033832848072052
	grad: 1.0 2.0 -0.055286407470703125 -0.055286407470703125 -0.055286407470703125
	grad: 2.0 4.0 -3.0117759704589844 -1.5058879852294922 -0.7529439926147461
	grad: 3.0 6.0 3.242237091064453 1.0807456970214844 0.3602485656738281
progress : 14 0.03244475647807121
	grad: 1.0 2.0 -0.0402219295501709 -0.0402219295501709 -0.0402219295501709
	grad: 2.0 4.0 -2.96356201171875 -1.481781005859375 -0.7408905029296875
	grad: 3.0 6.0 3.169976234436035 1.0566587448120117 0.3522195816040039
progress : 15 0.031014658510684967
	grad: 1.0 2.0 -0.025660991668701172 -0.025660991668701172 -0.025660991668701172
	grad: 2.0 4.0 -2.9161300659179688 -1.4580650329589844 -0.7290325164794922
	grad: 3.0 6.0 3.1033802032470703 1.0344600677490234 0.3448200225830078
progress : 16 0.02972521260380745
	grad: 1.0 2.0 -0.011710166931152344 -0.011710166931152344 -0.011710166931152344
	grad: 2.0 4.0 -2.8709793090820312 -1.4354896545410156 -0.7177448272705078
	grad: 3.0 6.0 3.037968635559082 1.0126562118530273 0.3375520706176758
progress : 17 0.02848535031080246
	grad: 1.0 2.0 0.0017132759094238281 0.0017132759094238281 0.0017132759094238281
	grad: 2.0 4.0 -2.8273067474365234 -1.4136533737182617 -0.7068266868591309
	grad: 3.0 6.0 2.975698471069336 0.9918994903564453 0.33063316345214844
progress : 18 0.027329571545124054
	grad: 1.0 2.0 0.014601707458496094 0.014601707458496094 0.014601707458496094
	grad: 2.0 4.0 -2.7853946685791016 -1.3926973342895508 -0.6963486671447754
	grad: 3.0 6.0 2.9154882431030273 0.9718294143676758 0.3239431381225586
progress : 19 0.026234788820147514
	grad: 1.0 2.0 0.026988983154296875 0.026988983154296875 0.026988983154296875
	grad: 2.0 4.0 -2.745006561279297 -1.3725032806396484 -0.6862516403198242
	grad: 3.0 6.0 2.857741355895996 0.952580451965332 0.31752681732177734
progress : 20 0.0252058207988739
	grad: 1.0 2.0 0.038887977600097656 0.038887977600097656 0.038887977600097656
	grad: 2.0 4.0 -2.706174850463867 -1.3530874252319336 -0.6765437126159668
	grad: 3.0 6.0 2.8021059036254883 0.9340353012084961 0.31134510040283203
progress : 21 0.024233942851424217
	grad: 1.0 2.0 0.050321102142333984 0.050321102142333984 0.050321102142333984
	grad: 2.0 4.0 -2.6687870025634766 -1.3343935012817383 -0.6671967506408691
	grad: 3.0 6.0 2.748607635498047 0.9162025451660156 0.3054008483886719
progress : 22 0.02331741899251938
	grad: 1.0 2.0 0.06130504608154297 0.06130504608154297 0.06130504608154297
	grad: 2.0 4.0 -2.6328048706054688 -1.3164024353027344 -0.6582012176513672
	grad: 3.0 6.0 2.697169303894043 0.8990564346313477 0.2996854782104492
progress : 23 0.02245284616947174
	grad: 1.0 2.0 0.07185697555541992 0.07185697555541992 0.07185697555541992
	grad: 2.0 4.0 -2.598186492919922 -1.299093246459961 -0.6495466232299805
	grad: 3.0 6.0 2.6476707458496094 0.8825569152832031 0.2941856384277344
progress : 24 0.021636297926306725
	grad: 1.0 2.0 0.08199405670166016 0.08199405670166016 0.08199405670166016
	grad: 2.0 4.0 -2.5648632049560547 -1.2824316024780273 -0.6412158012390137
	grad: 3.0 6.0 2.6000518798828125 0.8666839599609375 0.2888946533203125
progress : 25 0.020865030586719513
	grad: 1.0 2.0 0.09173202514648438 0.09173202514648438 0.09173202514648438
	grad: 2.0 4.0 -2.532787322998047 -1.2663936614990234 -0.6331968307495117
	grad: 3.0 6.0 2.5542526245117188 0.8514175415039062 0.28380584716796875
progress : 26 0.02013644017279148
	grad: 1.0 2.0 0.10108613967895508 0.10108613967895508 0.10108613967895508
	grad: 2.0 4.0 -2.5019149780273438 -1.2509574890136719 -0.6254787445068359
	grad: 3.0 6.0 2.5101699829101562 0.8367233276367188 0.27890777587890625
progress : 27 0.019447386264801025
	grad: 1.0 2.0 0.11007213592529297 0.11007213592529297 0.11007213592529297
	grad: 2.0 4.0 -2.472196578979492 -1.236098289489746 -0.618049144744873
	grad: 3.0 6.0 2.4677953720092773 0.8225984573364258 0.2741994857788086
progress : 28 0.018796339631080627
	grad: 1.0 2.0 0.11870288848876953 0.11870288848876953 0.11870288848876953
	grad: 2.0 4.0 -2.443592071533203 -1.2217960357666016 -0.6108980178833008
	grad: 3.0 6.0 2.4269914627075195 0.8089971542358398 0.2696657180786133
progress : 29 0.01817989908158779
	grad: 1.0 2.0 0.12699317932128906 0.12699317932128906 0.12699317932128906
	grad: 2.0 4.0 -2.4160499572753906 -1.2080249786376953 -0.6040124893188477
	grad: 3.0 6.0 2.387758255004883 0.7959194183349609 0.2653064727783203
progress : 30 0.017596881836652756
	grad: 1.0 2.0 0.13495588302612305 0.13495588302612305 0.13495588302612305
	grad: 2.0 4.0 -2.3895416259765625 -1.1947708129882812 -0.5973854064941406
	grad: 3.0 6.0 2.3499927520751953 0.7833309173583984 0.2611103057861328
progress : 31 0.01704464852809906
	grad: 1.0 2.0 0.14260339736938477 0.14260339736938477 0.14260339736938477
	grad: 2.0 4.0 -2.3640098571777344 -1.1820049285888672 -0.5910024642944336
	grad: 3.0 6.0 2.3136863708496094 0.7712287902832031 0.2570762634277344
progress : 32 0.016522051766514778
	grad: 1.0 2.0 0.1499481201171875 0.1499481201171875 0.1499481201171875
	grad: 2.0 4.0 -2.3394393920898438 -1.1697196960449219 -0.5848598480224609
	grad: 3.0 6.0 2.278718948364258 0.7595729827880859 0.2531909942626953
progress : 33 0.016026420518755913
	grad: 1.0 2.0 0.15700149536132812 0.15700149536132812 0.15700149536132812
	grad: 2.0 4.0 -2.3157730102539062 -1.1578865051269531 -0.5789432525634766
	grad: 3.0 6.0 2.245081901550293 0.7483606338500977 0.24945354461669922
progress : 34 0.015556767582893372
	grad: 1.0 2.0 0.16377639770507812 0.16377639770507812 0.16377639770507812
	grad: 2.0 4.0 -2.2929821014404297 -1.1464910507202148 -0.5732455253601074
	grad: 3.0 6.0 2.2127151489257812 0.7375717163085938 0.24585723876953125
progress : 35 0.01511144544929266
	grad: 1.0 2.0 0.17028093338012695 0.17028093338012695 0.17028093338012695
	grad: 2.0 4.0 -2.2710342407226562 -1.1355171203613281 -0.5677585601806641
	grad: 3.0 6.0 2.1815757751464844 0.7271919250488281 0.24239730834960938
progress : 36 0.014689113944768906
	grad: 1.0 2.0 0.1765270233154297 0.1765270233154297 0.1765270233154297
	grad: 2.0 4.0 -2.2499008178710938 -1.1249504089355469 -0.5624752044677734
	grad: 3.0 6.0 2.1515865325927734 0.7171955108642578 0.23906517028808594
progress : 37 0.014288038946688175
	grad: 1.0 2.0 0.1825251579284668 0.1825251579284668 0.1825251579284668
	grad: 2.0 4.0 -2.229541778564453 -1.1147708892822266 -0.5573854446411133
	grad: 3.0 6.0 2.122756004333496 0.707585334777832 0.23586177825927734
progress : 38 0.01390769425779581
	grad: 1.0 2.0 0.18828344345092773 0.18828344345092773 0.18828344345092773
	grad: 2.0 4.0 -2.2099380493164062 -1.1049690246582031 -0.5524845123291016
	grad: 3.0 6.0 2.094989776611328 0.6983299255371094 0.23277664184570312
progress : 39 0.013546241447329521
	grad: 1.0 2.0 0.19381237030029297 0.19381237030029297 0.19381237030029297
	grad: 2.0 4.0 -2.191049575805664 -1.095524787902832 -0.547762393951416
	grad: 3.0 6.0 2.068270683288574 0.6894235610961914 0.22980785369873047
progress : 40 0.013202912174165249
	grad: 1.0 2.0 0.19912052154541016 0.19912052154541016 0.19912052154541016
	grad: 2.0 4.0 -2.1728553771972656 -1.0864276885986328 -0.5432138442993164
	grad: 3.0 6.0 2.0425472259521484 0.6808490753173828 0.22694969177246094
progress : 41 0.012876540422439575
	grad: 1.0 2.0 0.20421600341796875 0.20421600341796875 0.20421600341796875
	grad: 2.0 4.0 -2.155324935913086 -1.077662467956543 -0.5388312339782715
	grad: 3.0 6.0 2.017793655395508 0.6725978851318359 0.2241992950439453
progress : 42 0.012566330842673779
	grad: 1.0 2.0 0.2091078758239746 0.2091078758239746 0.2091078758239746
	grad: 2.0 4.0 -2.1384334564208984 -1.0692167282104492 -0.5346083641052246
	grad: 3.0 6.0 1.993967056274414 0.6646556854248047 0.22155189514160156
progress : 43 0.012271310202777386
	grad: 1.0 2.0 0.21380329132080078 0.21380329132080078 0.21380329132080078
	grad: 2.0 4.0 -2.122159957885742 -1.061079978942871 -0.5305399894714355
	grad: 3.0 6.0 1.9710416793823242 0.6570138931274414 0.21900463104248047
progress : 44 0.01199075672775507
	grad: 1.0 2.0 0.2183094024658203 0.2183094024658203 0.2183094024658203
	grad: 2.0 4.0 -2.1064815521240234 -1.0532407760620117 -0.5266203880310059
	grad: 3.0 6.0 1.9489402770996094 0.6496467590332031 0.21654891967773438
progress : 45 0.011723359115421772
	grad: 1.0 2.0 0.22263526916503906 0.22263526916503906 0.22263526916503906
	grad: 2.0 4.0 -2.0913619995117188 -1.0456809997558594 -0.5228404998779297
	grad: 3.0 6.0 1.9276885986328125 0.6425628662109375 0.2141876220703125
progress : 46 0.011469084769487381
	grad: 1.0 2.0 0.22678565979003906 0.22678565979003906 0.22678565979003906
	grad: 2.0 4.0 -2.0767974853515625 -1.0383987426757812 -0.5191993713378906
	grad: 3.0 6.0 1.9072093963623047 0.6357364654541016 0.2119121551513672
progress : 47 0.011226690374314785
	grad: 1.0 2.0 0.23076915740966797 0.23076915740966797 0.23076915740966797
	grad: 2.0 4.0 -2.0627479553222656 -1.0313739776611328 -0.5156869888305664
	grad: 3.0 6.0 1.887502670288086 0.6291675567626953 0.20972251892089844
progress : 48 0.010995883494615555
	grad: 1.0 2.0 0.23459148406982422 0.23459148406982422 0.23459148406982422
	grad: 2.0 4.0 -2.049213409423828 -1.024606704711914 -0.512303352355957
	grad: 3.0 6.0 1.8685340881347656 0.6228446960449219 0.20761489868164062
progress : 49 0.01077598612755537
	grad: 1.0 2.0 0.23825836181640625 0.23825836181640625 0.23825836181640625
	grad: 2.0 4.0 -2.036165237426758 -1.018082618713379 -0.5090413093566895
	grad: 3.0 6.0 1.8502607345581055 0.6167535781860352 0.20558452606201172
progress : 50 0.01056624948978424
	grad: 1.0 2.0 0.2417769432067871 0.2417769432067871 0.2417769432067871
	grad: 2.0 4.0 -2.023578643798828 -1.011789321899414 -0.505894660949707
	grad: 3.0 6.0 1.8326568603515625 0.6108856201171875 0.2036285400390625
progress : 51 0.010366145521402359
	grad: 1.0 2.0 0.24515199661254883 0.24515199661254883 0.24515199661254883
	grad: 2.0 4.0 -2.011444091796875 -1.0057220458984375 -0.5028610229492188
	grad: 3.0 6.0 1.815713882446289 0.6052379608154297 0.20174598693847656
progress : 52 0.01017536036670208
	grad: 1.0 2.0 0.24838972091674805 0.24838972091674805 0.24838972091674805
	grad: 2.0 4.0 -1.9997406005859375 -0.9998703002929688 -0.4999351501464844
	grad: 3.0 6.0 1.7993717193603516 0.5997905731201172 0.19993019104003906
progress : 53 0.009993020445108414
	grad: 1.0 2.0 0.251495361328125 0.251495361328125 0.251495361328125
	grad: 2.0 4.0 -1.9884490966796875 -0.9942245483398438 -0.4971122741699219
	grad: 3.0 6.0 1.7836647033691406 0.5945549011230469 0.19818496704101562
progress : 54 0.009819320403039455
	grad: 1.0 2.0 0.2544727325439453 0.2544727325439453 0.2544727325439453
	grad: 2.0 4.0 -1.977560043334961 -0.9887800216674805 -0.49439001083374023
	grad: 3.0 6.0 1.7685070037841797 0.5895023345947266 0.1965007781982422
progress : 55 0.009653138928115368
	grad: 1.0 2.0 0.25732898712158203 0.25732898712158203 0.25732898712158203
	grad: 2.0 4.0 -1.9670524597167969 -0.9835262298583984 -0.4917631149291992
	grad: 3.0 6.0 1.7539243698120117 0.5846414566040039 0.19488048553466797
progress : 56 0.00949460081756115
	grad: 1.0 2.0 0.2600669860839844 0.2600669860839844 0.2600669860839844
	grad: 2.0 4.0 -1.9569168090820312 -0.9784584045410156 -0.4892292022705078
	grad: 3.0 6.0 1.7398567199707031 0.5799522399902344 0.19331741333007812
progress : 57 0.009342905133962631
	grad: 1.0 2.0 0.2626924514770508 0.2626924514770508 0.2626924514770508
	grad: 2.0 4.0 -1.9471321105957031 -0.9735660552978516 -0.4867830276489258
	grad: 3.0 6.0 1.7263212203979492 0.5754404067993164 0.19181346893310547
progress : 58 0.009198102168738842
	grad: 1.0 2.0 0.2652091979980469 0.2652091979980469 0.2652091979980469
	grad: 2.0 4.0 -1.9376907348632812 -0.9688453674316406 -0.4844226837158203
	grad: 3.0 6.0 1.7132577896118164 0.5710859298706055 0.19036197662353516
progress : 59 0.009059420786798
	grad: 1.0 2.0 0.2676219940185547 0.2676219940185547 0.2676219940185547
	grad: 2.0 4.0 -1.9285755157470703 -0.9642877578735352 -0.4821438789367676
	grad: 3.0 6.0 1.7006921768188477 0.5668973922729492 0.1889657974243164
progress : 60 0.008927018381655216
	grad: 1.0 2.0 0.26993370056152344 0.26993370056152344 0.26993370056152344
	grad: 2.0 4.0 -1.9197769165039062 -0.9598884582519531 -0.47994422912597656
	grad: 3.0 6.0 1.6885557174682617 0.5628519058227539 0.18761730194091797
progress : 61 0.008800063282251358
	grad: 1.0 2.0 0.27214908599853516 0.27214908599853516 0.27214908599853516
	grad: 2.0 4.0 -1.9112777709960938 -0.9556388854980469 -0.47781944274902344
	grad: 3.0 6.0 1.6768827438354492 0.5589609146118164 0.18632030487060547
progress : 62 0.008678814396262169
	grad: 1.0 2.0 0.27427196502685547 0.27427196502685547 0.27427196502685547
	grad: 2.0 4.0 -1.9030742645263672 -0.9515371322631836 -0.4757685661315918
	grad: 3.0 6.0 1.665604591369629 0.555201530456543 0.18506717681884766
progress : 63 0.008562465198338032
	grad: 1.0 2.0 0.2763056755065918 0.2763056755065918 0.2763056755065918
	grad: 2.0 4.0 -1.8951435089111328 -0.9475717544555664 -0.4737858772277832
	grad: 3.0 6.0 1.6547555923461914 0.5515851974487305 0.18386173248291016
progress : 64 0.008451283909380436
	grad: 1.0 2.0 0.27825355529785156 0.27825355529785156 0.27825355529785156
	grad: 2.0 4.0 -1.887491226196289 -0.9437456130981445 -0.47187280654907227
	grad: 3.0 6.0 1.6442756652832031 0.5480918884277344 0.18269729614257812
progress : 65 0.008344575762748718
	grad: 1.0 2.0 0.2801189422607422 0.2801189422607422 0.2801189422607422
	grad: 2.0 4.0 -1.8800926208496094 -0.9400463104248047 -0.47002315521240234
	grad: 3.0 6.0 1.634190559387207 0.5447301864624023 0.18157672882080078
progress : 66 0.008242527022957802
	grad: 1.0 2.0 0.2819051742553711 0.2819051742553711 0.2819051742553711
	grad: 2.0 4.0 -1.8729438781738281 -0.9364719390869141 -0.46823596954345703
	grad: 3.0 6.0 1.6244573593139648 0.5414857864379883 0.1804952621459961
progress : 67 0.008144634775817394
	grad: 1.0 2.0 0.2836151123046875 0.2836151123046875 0.2836151123046875
	grad: 2.0 4.0 -1.866037368774414 -0.933018684387207 -0.4665093421936035
	grad: 3.0 6.0 1.615067481994629 0.538355827331543 0.17945194244384766
progress : 68 0.008050750009715557
	grad: 1.0 2.0 0.28525209426879883 0.28525209426879883 0.28525209426879883
	grad: 2.0 4.0 -1.859354019165039 -0.9296770095825195 -0.46483850479125977
	grad: 3.0 6.0 1.6060123443603516 0.5353374481201172 0.17844581604003906
progress : 69 0.00796072743833065
	grad: 1.0 2.0 0.2868185043334961 0.2868185043334961 0.2868185043334961
	grad: 2.0 4.0 -1.8528995513916016 -0.9264497756958008 -0.4632248878479004
	grad: 3.0 6.0 1.5972661972045898 0.5324220657348633 0.1774740219116211
progress : 70 0.007874256931245327
	grad: 1.0 2.0 0.2883176803588867 0.2883176803588867 0.2883176803588867
	grad: 2.0 4.0 -1.846649169921875 -0.9233245849609375 -0.46166229248046875
	grad: 3.0 6.0 1.588846206665039 0.5296154022216797 0.17653846740722656
progress : 71 0.007791457697749138
	grad: 1.0 2.0 0.2897510528564453 0.2897510528564453 0.2897510528564453
	grad: 2.0 4.0 -1.8406105041503906 -0.9203052520751953 -0.46015262603759766
	grad: 3.0 6.0 1.580709457397461 0.5269031524658203 0.17563438415527344
progress : 72 0.007711859419941902
	grad: 1.0 2.0 0.2911224365234375 0.2911224365234375 0.2911224365234375
	grad: 2.0 4.0 -1.8347663879394531 -0.9173831939697266 -0.4586915969848633
	grad: 3.0 6.0 1.5728645324707031 0.5242881774902344 0.17476272583007812
progress : 73 0.007635502610355616
	grad: 1.0 2.0 0.2924337387084961 0.2924337387084961 0.2924337387084961
	grad: 2.0 4.0 -1.8291091918945312 -0.9145545959472656 -0.4572772979736328
	grad: 3.0 6.0 1.5652856826782227 0.5217618942260742 0.1739206314086914
progress : 74 0.007562096696346998
	grad: 1.0 2.0 0.2936873435974121 0.2936873435974121 0.2936873435974121
	grad: 2.0 4.0 -1.8236351013183594 -0.9118175506591797 -0.45590877532958984
	grad: 3.0 6.0 1.5579643249511719 0.5193214416503906 0.17310714721679688
progress : 75 0.007491521071642637
	grad: 1.0 2.0 0.29488515853881836 0.29488515853881836 0.29488515853881836
	grad: 2.0 4.0 -1.8183326721191406 -0.9091663360595703 -0.45458316802978516
	grad: 3.0 6.0 1.5509090423583984 0.5169696807861328 0.17232322692871094
progress : 76 0.007423823699355125
	grad: 1.0 2.0 0.29602956771850586 0.29602956771850586 0.29602956771850586
	grad: 2.0 4.0 -1.813201904296875 -0.9066009521484375 -0.45330047607421875
	grad: 3.0 6.0 1.5440940856933594 0.5146980285644531 0.17156600952148438
progress : 77 0.007358723785728216
	grad: 1.0 2.0 0.2971224784851074 0.2971224784851074 0.2971224784851074
	grad: 2.0 4.0 -1.8082351684570312 -0.9041175842285156 -0.4520587921142578
	grad: 3.0 6.0 1.5375194549560547 0.5125064849853516 0.1708354949951172
progress : 78 0.007296191528439522
	grad: 1.0 2.0 0.29816627502441406 0.29816627502441406 0.29816627502441406
	grad: 2.0 4.0 -1.8034210205078125 -0.9017105102539062 -0.4508552551269531
	grad: 3.0 6.0 1.531142234802246 0.510380744934082 0.17012691497802734
progress : 79 0.007235791999846697
	grad: 1.0 2.0 0.2991628646850586 0.2991628646850586 0.2991628646850586
	grad: 2.0 4.0 -1.7987518310546875 -0.8993759155273438 -0.4496879577636719
	grad: 3.0 6.0 1.5249967575073242 0.5083322525024414 0.16944408416748047
progress : 80 0.00717782462015748
	grad: 1.0 2.0 0.30011415481567383 0.30011415481567383 0.30011415481567383
	grad: 2.0 4.0 -1.794229507446289 -0.8971147537231445 -0.44855737686157227
	grad: 3.0 6.0 1.5190658569335938 0.5063552856445312 0.16878509521484375
progress : 81 0.007122102193534374
	grad: 1.0 2.0 0.30102109909057617 0.30102109909057617 0.30102109909057617
	grad: 2.0 4.0 -1.7898445129394531 -0.8949222564697266 -0.4474611282348633
	grad: 3.0 6.0 1.5133237838745117 0.5044412612915039 0.16814708709716797
progress : 82 0.007068360690027475
	grad: 1.0 2.0 0.30188608169555664 0.30188608169555664 0.30188608169555664
	grad: 2.0 4.0 -1.785593032836914 -0.892796516418457 -0.4463982582092285
	grad: 3.0 6.0 1.507796287536621 0.502598762512207 0.16753292083740234
progress : 83 0.007016819901764393
	grad: 1.0 2.0 0.30271005630493164 0.30271005630493164 0.30271005630493164
	grad: 2.0 4.0 -1.781473159790039 -0.8907365798950195 -0.44536828994750977
	grad: 3.0 6.0 1.5024147033691406 0.5008049011230469 0.16693496704101562
progress : 84 0.006966820918023586
	grad: 1.0 2.0 0.3034963607788086 0.3034963607788086 0.3034963607788086
	grad: 2.0 4.0 -1.7774696350097656 -0.8887348175048828 -0.4443674087524414
	grad: 3.0 6.0 1.4972476959228516 0.4990825653076172 0.16636085510253906
progress : 85 0.006918983533978462
	grad: 1.0 2.0 0.3042440414428711 0.3042440414428711 0.3042440414428711
	grad: 2.0 4.0 -1.773590087890625 -0.8867950439453125 -0.44339752197265625
	grad: 3.0 6.0 1.492218017578125 0.497406005859375 0.165802001953125
progress : 86 0.006872575730085373
	grad: 1.0 2.0 0.30495643615722656 0.30495643615722656 0.30495643615722656
	grad: 2.0 4.0 -1.769815444946289 -0.8849077224731445 -0.44245386123657227
	grad: 3.0 6.0 1.4873857498168945 0.49579524993896484 0.16526508331298828
progress : 87 0.006828136742115021
	grad: 1.0 2.0 0.305633544921875 0.305633544921875 0.305633544921875
	grad: 2.0 4.0 -1.7661628723144531 -0.8830814361572266 -0.4415407180786133
	grad: 3.0 6.0 1.4826650619506836 0.49422168731689453 0.16474056243896484
progress : 88 0.0067848633043468
	grad: 1.0 2.0 0.30627870559692383 0.30627870559692383 0.30627870559692383
	grad: 2.0 4.0 -1.7625980377197266 -0.8812990188598633 -0.44064950942993164
	grad: 3.0 6.0 1.4781503677368164 0.49271678924560547 0.16423892974853516
progress : 89 0.006743606645613909
	grad: 1.0 2.0 0.30689048767089844 0.30689048767089844 0.30689048767089844
	grad: 2.0 4.0 -1.7591476440429688 -0.8795738220214844 -0.4397869110107422
	grad: 3.0 6.0 1.4737472534179688 0.49124908447265625 0.16374969482421875
progress : 90 0.006703490857034922
	grad: 1.0 2.0 0.30747222900390625 0.30747222900390625 0.30747222900390625
	grad: 2.0 4.0 -1.755788803100586 -0.877894401550293 -0.4389472007751465
	grad: 3.0 6.0 1.469498634338379 0.48983287811279297 0.16327762603759766
progress : 91 0.006664895918220282
	grad: 1.0 2.0 0.30802440643310547 0.30802440643310547 0.30802440643310547
	grad: 2.0 4.0 -1.7525253295898438 -0.8762626647949219 -0.43813133239746094
	grad: 3.0 6.0 1.4653615951538086 0.48845386505126953 0.16281795501708984
progress : 92 0.006627421826124191
	grad: 1.0 2.0 0.3085489273071289 0.3085489273071289 0.3085489273071289
	grad: 2.0 4.0 -1.7493476867675781 -0.8746738433837891 -0.43733692169189453
	grad: 3.0 6.0 1.4613962173461914 0.48713207244873047 0.16237735748291016
progress : 93 0.006591601762920618
	grad: 1.0 2.0 0.30904483795166016 0.30904483795166016 0.30904483795166016
	grad: 2.0 4.0 -1.7462654113769531 -0.8731327056884766 -0.4365663528442383
	grad: 3.0 6.0 1.4575080871582031 0.4858360290527344 0.16194534301757812
progress : 94 0.006556573323905468
	grad: 1.0 2.0 0.30951595306396484 0.30951595306396484 0.30951595306396484
	grad: 2.0 4.0 -1.7432537078857422 -0.8716268539428711 -0.43581342697143555
	grad: 3.0 6.0 1.453765869140625 0.484588623046875 0.161529541015625
progress : 95 0.006522947922348976
	grad: 1.0 2.0 0.30996084213256836 0.30996084213256836 0.30996084213256836
	grad: 2.0 4.0 -1.740325927734375 -0.8701629638671875 -0.43508148193359375
	grad: 3.0 6.0 1.450143814086914 0.4833812713623047 0.16112709045410156
progress : 96 0.006490484811365604
	grad: 1.0 2.0 0.3103818893432617 0.3103818893432617 0.3103818893432617
	grad: 2.0 4.0 -1.7374801635742188 -0.8687400817871094 -0.4343700408935547
	grad: 3.0 6.0 1.4466075897216797 0.48220252990722656 0.1607341766357422
progress : 97 0.0064588687382638454
	grad: 1.0 2.0 0.3107795715332031 0.3107795715332031 0.3107795715332031
	grad: 2.0 4.0 -1.734701156616211 -0.8673505783081055 -0.43367528915405273
	grad: 3.0 6.0 1.4432086944580078 0.48106956481933594 0.1603565216064453
progress : 98 0.006428553722798824
	grad: 1.0 2.0 0.311154842376709 0.311154842376709 0.311154842376709
	grad: 2.0 4.0 -1.7319984436035156 -0.8659992218017578 -0.4329996109008789
	grad: 3.0 6.0 1.4398870468139648 0.4799623489379883 0.1599874496459961
progress : 99 0.0063989958725869656
progress (after training) 4 8.54206371307373

你可能感兴趣的:(pytorch,深度学习,算法)