【机器学习】详解 EfficientNet

【机器学习】详解 EfficientNet_第1张图片


  • Paper 地址:https://arxiv.org/abs/1905.11946
  • PyTorch 实现:https://github.com/lukemelas/EfficientNet-PyTorch
  • TensorFlow 实现:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

目录

一、摘要

二、介绍

三、网络放缩

3.1 问题构造

3.2 维度放缩

3.3 复合放缩

四、网络架构

五、对比实验

六、架构细节

6.1 图示

6.2 代码

七、EfficientNet V2


一、摘要

卷积神经网络 (ConvNets) 通常是在固定资源预算下开发的,若有更多资源可用,则可扩大规模以提高准确率。本文系统地研究了模型放缩,并证实了 仔细地平衡 网络深度、网络宽度和图像分辨率 可带来更好性能。基于这一观察,本文提出了一种新的放缩方法,该方法使用了一个简单但高效的 复合系数 (compound coeffificient) 统一地放缩深度/宽度/分辨率的所有维度。本文证明了这种方法在扩大 MobileNets 和 ResNet 方面的有效性。 

更进一步地,本文使用 神经架构搜索 (neural architecture search) 来设计一个新的基线网络,并对其扩展以获得一系列称为 EfficientNets 的模型,它比以前的 ConvNets 的准确性和效率更佳。特别地,EfficientNet-B7 在 ImageNet 上达到了 SOTA 的 84.3% 的 top-1 准确率,同时比现有最好的 ConvNet 小 8.4 倍、推理速度快 6.1 倍。EfficientNets 在 CIFAR-100 (91.7%)、Flowers (98.8%) 和其他 3 个迁移学习数据集上也能很好地迁移,并达到 SOTA 的准确率,而参数少了一个数量级。


二、介绍

扩大 ConvNets 被广泛用于获得更佳精度。例如,ResNet 可通过使用更多层从 ResNet-18 扩大到 ResNet-200;最近,GPipe 通过扩大基线模型 4 倍,获得了 84.3% 的ImageNet top-1 准确度。然而,扩大 ConvNets 的过程从未被很好地理解过,目前有很多方法可以做到这一点。最常见的方法是通过深度或宽度扩大 ConvNets。另一种不太常见但越来越流行的方法是通过图像分辨率扩大模型。以往,通常只按深度/宽度/图像尺寸这三个维度之一来放缩。尽管可以任意放缩两个或三个维度,但需要繁琐的手工调优,且常无法达到最佳的准确度和效率。

【机器学习】详解 EfficientNet_第2张图片

在本文中,我们想研究和重新思考扩大 ConvNets 的过程。特别地,我们调查中心问题:是否存在一个原则性方法来扩大 ConvNets,以达到更好的准确率和效率?我们的实证研究表明,平衡网络宽度/深度/分辨率的所有维度是至关重要的,且令人惊讶的是,这种平衡可通过简单地使用固定比例缩放来实现。基于此观察,我们提出了一种简单而有效的复合放缩方法。有别于传统实践中的任意放缩这些因子,我们的方法均匀/统一地缩放网络的宽度、深度及一组固定放缩系数的分辨率。例如,如果我们想使用 2^N 倍以上的计算资源,那么我们可以简单地将网络深度增加 \alpha ^ N,宽度增加 \beta ^ N,图像大小增加 \gamma ^ N,其中 \alpha\beta\gamma 是在原始小模型上进行小网格搜索所确定的常系数。图 2 阐述了我们的放缩方法和传统方法之间的区别。

直观上,复合放缩方法是有意义的,因为若输入图像更大,那么网络需要 更多层来增加感受野 和 更多的通道来捕捉更细粒度的模式。事实上,之前的理论和实证结果均表明网络宽度和深度之间存在一定的关系,但据我们所知,我们是第一个对网络宽度、深度和分辨率三个维度之间的关系进行实证量化的人。

【机器学习】详解 EfficientNet_第3张图片

【机器学习】详解 EfficientNet_第4张图片

本文证明了上述复合缩放方法在 MobileNets 和 ResNet 上工作得很好。值得注意的是,模型缩放的有效性在很大程度上依赖于基线网络。更进一步地,我们使用 神经架构搜索 来开发一个新的基线网络,并将其扩展以获得一系列称为 EfficientNets 的模型。图 1 总结了 ImageNet 的性能,其中 EfficientNets 明显优于其他 ConvNets。特别地,EfficientNets-B7 超过了现有的最佳 GPipe 准确度,却减少了 8.4 倍参数、提高了 6.1倍推理速度。与广泛使用的 ResNet-50 相比,EffcientNet-B4 在类似的 FLOPs 下将 top-1 准确度从 76.3% 提高到 83.0%(+6.7%)。除 ImageNet,EfficientNets 也有很好的迁移能力,在 8 个广泛使用的数据集中的 5 个上实现了 SOTA 的准确度,同时减少了比现有 ConvNets 至多 21 倍的参数。


三、网络放缩

3.1 问题构造

【机器学习】详解 EfficientNet_第5张图片

【机器学习】详解 EfficientNet_第6张图片


3.2 维度放缩

问题 2 的主要难点是最优的 dwr 相互依赖,在不同的资源约束下,其值会发生变化。由于该困难,传统方法主要在以下维度之一中扩大 ConvNets:

【机器学习】详解 EfficientNet_第7张图片

  • 深度 d

最常用的方法是放缩网络深度,这被许多 ConvNets 使用。直观地,更深的 ConvNets 可以捕获更丰富、更复杂的特征,并很好地泛化与新的任务。然而,由于梯度消失,深度网络的训练也更加困难。虽然诸如 Skip Connection 和 BN 等技术缓解了训练问题,极深网络的准确率增益仍会降低。例如,ResNet-1000 和 ResNet-101 有相似的准确度,尽管前者有更多的层。图3 (中) 显示了对不同深度系数 d 的基线模型的放缩实证研究,进一步表明 极深的 ConvNets 的准确率回报减少了

  • 宽度 w 

放缩网络宽度广泛用于小型模型。更宽的网络往往能够捕捉到更细粒度的特征,也更容易训练。然而。极宽但浅的网络在捕获更高层次的特征时往往存在困难。我们的经验结果显示于 图3 (左)当网络因具有更大的 w 而变得更宽时,准确率很快饱和

  • 分辨率 r 

有了更高分辨率的输入图像,ConvNets 可以潜在地捕获更细粒度的模式。从早期 ConvNets 的 224x224 开始,现代的 ConvNets 倾向于使用 299x299 或 331x331 以提高准确率。最近,GPipe 实现了 SOTA 的 ImageNet 准确率,分辨率为 480x480。如 600x600 等更高分辨率,也被广泛应用于目标检测 ConvNets 中。图3 (右) 显示了网络分辨率放缩的结果,更高的分辨率确实提高了准确率,但是对于非常高的分辨率,准确率增益会降低 (分辨率 r = 1.0 表示 224x224,r = 2.5 表示 560x560)。

以上分析使我们得出第一个结论:

  • 观察结论 1扩大网络宽度、深度或分辨率的任意维度都可以提高准确度,但对于更大的模型,准确度增益会降低

3.3 复合放缩

我们从经验上观察到,不同的放缩维度不是独立的。直观地,对于分辨率较高的图像,应增加网络深度,从而更大的感受野 可以在更大图像中 有助于捕获 包含更多像素的相似特征。相应地,当分辨率较高时,也应增加网络宽度,以便于在高分辨率图像中 捕获 具有更多像素的 更多细粒度模式。这些直觉表明,我们需要协调和平衡不同的放缩维度,而非传统的一维放缩。

【机器学习】详解 EfficientNet_第8张图片

为验证我们的直觉,我们比较了不同网络深度和分辨率下的宽度放缩,如图4所示。如果只放缩网络宽度 w 而不改变深度 (d = 1.0) 和分辨率 (r = 1.0),准确率会很快饱和。具有更深的 (d = 2.0) 和更高的分辨率 (r = 2.0),宽度缩放在相同的 FLOPs 代价下达到更好的准确率。

以上结果使我们得出第二个结论:

  • 观察结论2为追求更高的准确率和效率,在放缩 ConVnet 时,关键是要平衡网络宽度、深度和分辨率的各个维度

事实上,之前的一些工作已尝试过任意平衡网络宽度和深度,但均需繁琐的手动调整。

本文提出了一种新的复合放缩方法,利用复合系数有原则地均匀/统一放缩网络宽度、深度和分辨率:

【机器学习】详解 EfficientNet_第9张图片

 其中,\alpha\beta\gamma 均为常数,可由小网格搜索决定。直观地,\phi 是一个用户特定的系数,用于控制多少资源可用于模型放缩,而 \alpha\beta\gamma 表明如何分配这些额外资源以分别用于网络宽度、深度和分辨率。 值得注意的是,常规卷积操作的 FLOPS 与 dw^2r^2 成正比,即令网络深度加倍将使 FLOPS 加倍,但使网络宽度或分辨率加倍则将使 FLOPS 增加 4 倍。因为卷积操作通常决定了 ConvNets 的运算成本,根据上式放缩一个 ConvNet 将近似增加 (\alpha \cdot \beta^2 \cdot \gamma^2)^\phi 的总 FLOPS。在本文,我们约束 \alpha \cdot \beta^2 \cdot \gamma^2 \approx 2 以便于对任意新 \phi,总 FLOPS 将近似增加 2^\phi


四、网络架构

由于模型缩放不会改变基线网络中的层算子 \hat{F_i},因此具有一个良好的基线网络也是至关重要的。我们将使用现有的 ConyNets 来评估我们的放缩方法,但为更好地证明我们的放缩方法的有效性。我们还开发了一种新的手机尺寸的基准 —— EfficientNet

【机器学习】详解 EfficientNet_第10张图片

受到启发,我们通过利用 多目标 NAS 来优化基线网络,这种搜索既优化了准确度,也优化了 FLOPS。具体地,使用相同的搜索空间 并 用 ACC(m) \times [FLOPS(m)/T]^w 作为优化目标,其中 ACC(m) 和 FLOPS(m) 表示模型 m 的准确率和 FLOPS,T 是目标 FLOPS 且 w=-0.07 是一个超参数,用于控制准确率和 FLOPS 之间的权衡。不同于之前的工作,这里我们优化的是 FLOPS 而非延迟,因为我们不针对任何特定的硬件设备。我们的搜索产生了一个高效的网络 —— EfficientNet - B0。由于我们使用相同的搜索空间,架构类似于 MnasNet,但 EfficientNet - B0 稍微大一些,因其 FLOPS 目标更大 (我们的 FLOPS 目标是 400M)。表 1 显示了 EfficientNet - B0 的架构。其主要构造块 (Building Block) 为 mobile inverted bottleneck MBConv,我们也对其加入了 通道注意力 进行优化。

从基线 EfficientNet - B0 开始,我们通过两个步骤应用我们的复合放缩方法来扩展它:

  • 步骤1:首先固定 \phi = 1,假设有两倍以上的资源可用,则基于式 2 和 3 对 \alpha\beta\gamma 进行小网格搜索。特别地,在 \alpha \cdot \beta^2 \cdot \gamma^2 \approx 2 的约束下,我们发现 EfficientNet - B0 的最佳值为 \alpha=1.2, \beta=1.1, \gamma=1.15
  • 步骤2:然后将 \alpha\beta\gamma 固定为常数,并根据式 3 使用不同的 \phi 扩大基线网络,从而得到 EfficientNet - B1 ~ EfficientNet - B7 (详见表2)

值得注意的是,通过直接围绕大模型搜索 \alpha\beta\gamma 有可能获得更好的性能,但在大模型上的搜索成本会变得昂贵得令人难以接受。我们的方法解决了该问题,即 只在小的基线网络上先进行一次搜索 (步骤1),然后对所有其他模型使用相同的放缩系数 (步骤2)


五、对比实验

【机器学习】详解 EfficientNet_第11张图片

【机器学习】详解 EfficientNet_第12张图片

【机器学习】详解 EfficientNet_第13张图片

【机器学习】详解 EfficientNet_第14张图片


六、架构细节


6.1 图示

【机器学习】详解 EfficientNet_第15张图片

任何网络的 Stem 都是最关键的,确定后才会进行后续实验,上图的 头部/尾部架构 在 EfficientNet - B1 ~ EfficientNet - B7 都有出现,这些块还有不同数量的子块,子块数随版本的增加而增加。以下代码可用于查看模型架构:

import tensorflow as tf
IMG_SHAPE = (224, 224, 3)
model0 = tf.keras.applications.EfficientNetB0(input_shape=IMG_SHAPE, include_top=False, weights="imagenet")
tf.keras.utils.plot_model(model0)  # to draw and visualize
model0.summary()  # to see the list of layers and parameters

其中,EfficientNet-B0 总层数为 237、EfficientNet-B7 总层数为 813,但其实都可由以下 5 个模块和上述 2 个头部/尾部架构构成。

【机器学习】详解 EfficientNet_第16张图片

由上述 5 个模块 (Module) 构成以下三种块 (Block):

preview 其实 Sub-block1~3 分别对应以下 EfficientNet 中的 Module 1、Module 2、Module 3 不要混淆了

至此,所有用于构建 EfficientNet 的块已经确定,以下是各模型的架构 (×n means that modules inside the bracket are repeated n times):

  • EfficientNet-B0

【机器学习】详解 EfficientNet_第17张图片

  • EfficientNet-B1

【机器学习】详解 EfficientNet_第18张图片

  • EfficientNet-B2

结构与 EfficientNet-B1 相同,唯一的区别是通道数不同,从而增加了参数量。

  • EfficientNet-B3

【机器学习】详解 EfficientNet_第19张图片

  • EfficientNet-B4

【机器学习】详解 EfficientNet_第20张图片

  • EfficientNet-B5

【机器学习】详解 EfficientNet_第21张图片

  • EfficientNet-B6 

【机器学习】详解 EfficientNet_第22张图片

  • EfficientNet-B7

【机器学习】详解 EfficientNet_第23张图片

综上,容易看出各模型之间的差异 —— 子块数量逐渐增多。下表显示了 EfficientNet-B0 中卷积核尺寸、分辨率大小、通道数和层数:

【机器学习】详解 EfficientNet_第24张图片

下表展示了不同网络架构下,各阶段的通道数 (各阶段分辨率大小一一对应):

【机器学习】详解 EfficientNet_第25张图片


6.2 代码

EfficientNet-PyTorch/efficientnet_pytorch/model.py 

"""model.py - Model and module class for EfficientNet.
   They are built to mirror those in the official TensorFlow implementation.
"""

# Author: lukemelas (github username)
# Github repo: https://github.com/lukemelas/EfficientNet-PyTorch
# With adjustments and added comments by workingcoder (github username).

import torch
from torch import nn
from torch.nn import functional as F
from .utils import (
    round_filters,
    round_repeats,
    drop_connect,
    get_same_padding_conv2d,
    get_model_params,
    efficientnet_params,
    load_pretrained_weights,
    Swish,
    MemoryEfficientSwish,
    calculate_output_image_size
)


VALID_MODELS = (
    'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3',
    'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7',
    'efficientnet-b8',

    # Support the construction of 'efficientnet-l2' without pretrained weights
    'efficientnet-l2'
)


class MBConvBlock(nn.Module):
    """Mobile Inverted Residual Bottleneck Block.
    Args:
        block_args (namedtuple): BlockArgs, defined in utils.py.
        global_params (namedtuple): GlobalParam, defined in utils.py.
        image_size (tuple or list): [image_height, image_width].
    References:
        [1] https://arxiv.org/abs/1704.04861 (MobileNet v1)
        [2] https://arxiv.org/abs/1801.04381 (MobileNet v2)
        [3] https://arxiv.org/abs/1905.02244 (MobileNet v3)
    """

    def __init__(self, block_args, global_params, image_size=None):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum  # pytorch's difference from tensorflow
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # whether to use skip connection and drop connect

        # Expansion phase (Inverted Bottleneck)
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            Conv2d = get_same_padding_conv2d(image_size=image_size)
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
            # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
        image_size = calculate_output_image_size(image_size, s)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            Conv2d = get_same_padding_conv2d(image_size=(1, 1))
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Pointwise convolution phase
        final_oup = self._block_args.output_filters
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """MBConvBlock's forward function.
        Args:
            inputs (tensor): Input tensor.
            drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).
        Returns:
            Output of this block after processing.
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._expand_conv(inputs)
            x = self._bn0(x)
            x = self._swish(x)

        x = self._depthwise_conv(x)
        x = self._bn1(x)
        x = self._swish(x)

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_reduce(x_squeezed)
            x_squeezed = self._swish(x_squeezed)
            x_squeezed = self._se_expand(x_squeezed)
            x = torch.sigmoid(x_squeezed) * x

        # Pointwise Convolution
        x = self._project_conv(x)
        x = self._bn2(x)

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            # The combination of skip connection and drop connect brings about stochastic depth.
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).
        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class EfficientNet(nn.Module):
    """EfficientNet model.
       Most easily loaded with the .from_name or .from_pretrained methods.
    Args:
        blocks_args (list[namedtuple]): A list of BlockArgs to construct blocks.
        global_params (namedtuple): A set of GlobalParams shared between blocks.
    References:
        [1] https://arxiv.org/abs/1905.11946 (EfficientNet)
    Example:
        >>> import torch
        >>> from efficientnet.model import EfficientNet
        >>> inputs = torch.rand(1, 3, 224, 224)
        >>> model = EfficientNet.from_pretrained('efficientnet-b0')
        >>> model.eval()
        >>> outputs = model(inputs)
    """

    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Get stem static or dynamic convolution depending on image size
        image_size = global_params.image_size
        Conv2d = get_same_padding_conv2d(image_size=image_size)

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        image_size = calculate_output_image_size(image_size, 2)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
            image_size = calculate_output_image_size(image_size, block_args.stride)
            if block_args.num_repeat > 1:  # modify block_args to keep same output size
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
                # image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        if self._global_params.include_top:
            self._dropout = nn.Dropout(self._global_params.dropout_rate)
            self._fc = nn.Linear(out_channels, self._global_params.num_classes)

        # set activation to memory efficient swish by default
        self._swish = MemoryEfficientSwish()

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).
        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_endpoints(self, inputs):
        """Use convolution layer to extract features
        from reduction levels i in [1, 2, 3, 4, 5].
        Args:
            inputs (tensor): Input tensor.
        Returns:
            Dictionary of last intermediate features
            with reduction levels i in [1, 2, 3, 4, 5].
            Example:
                >>> import torch
                >>> from efficientnet.model import EfficientNet
                >>> inputs = torch.rand(1, 3, 224, 224)
                >>> model = EfficientNet.from_pretrained('efficientnet-b0')
                >>> endpoints = model.extract_endpoints(inputs)
                >>> print(endpoints['reduction_1'].shape)  # torch.Size([1, 16, 112, 112])
                >>> print(endpoints['reduction_2'].shape)  # torch.Size([1, 24, 56, 56])
                >>> print(endpoints['reduction_3'].shape)  # torch.Size([1, 40, 28, 28])
                >>> print(endpoints['reduction_4'].shape)  # torch.Size([1, 112, 14, 14])
                >>> print(endpoints['reduction_5'].shape)  # torch.Size([1, 320, 7, 7])
                >>> print(endpoints['reduction_6'].shape)  # torch.Size([1, 1280, 7, 7])
        """
        endpoints = dict()

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        prev_x = x

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            if prev_x.size(2) > x.size(2):
                endpoints['reduction_{}'.format(len(endpoints) + 1)] = prev_x
            elif idx == len(self._blocks) - 1:
                endpoints['reduction_{}'.format(len(endpoints) + 1)] = x
            prev_x = x

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))
        endpoints['reduction_{}'.format(len(endpoints) + 1)] = x

        return endpoints

    def extract_features(self, inputs):
        """use convolution layer to extract feature .
        Args:
            inputs (tensor): Input tensor.
        Returns:
            Output of the final convolution
            layer in the efficientnet model.
        """
        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))

        return x

    def forward(self, inputs):
        """EfficientNet's forward function.
           Calls extract_features to extract features, applies final linear layer, and returns logits.
        Args:
            inputs (tensor): Input tensor.
        Returns:
            Output of this model after processing.
        """
        # Convolution layers
        x = self.extract_features(inputs)
        # Pooling and final linear layer
        x = self._avg_pooling(x)
        if self._global_params.include_top:
            x = x.flatten(start_dim=1)
            x = self._dropout(x)
            x = self._fc(x)
        return x

    @classmethod
    def from_name(cls, model_name, in_channels=3, **override_params):
        """Create an efficientnet model according to name.
        Args:
            model_name (str): Name for efficientnet.
            in_channels (int): Input data's channel number.
            override_params (other key word params):
                Params to override model's global_params.
                Optional key:
                    'width_coefficient', 'depth_coefficient',
                    'image_size', 'dropout_rate',
                    'num_classes', 'batch_norm_momentum',
                    'batch_norm_epsilon', 'drop_connect_rate',
                    'depth_divisor', 'min_depth'
        Returns:
            An efficientnet model.
        """
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name, override_params)
        model = cls(blocks_args, global_params)
        model._change_in_channels(in_channels)
        return model

    @classmethod
    def from_pretrained(cls, model_name, weights_path=None, advprop=False,
                        in_channels=3, num_classes=1000, **override_params):
        """Create an efficientnet model according to name.
        Args:
            model_name (str): Name for efficientnet.
            weights_path (None or str):
                str: path to pretrained weights file on the local disk.
                None: use pretrained weights downloaded from the Internet.
            advprop (bool):
                Whether to load pretrained weights
                trained with advprop (valid when weights_path is None).
            in_channels (int): Input data's channel number.
            num_classes (int):
                Number of categories for classification.
                It controls the output size for final linear layer.
            override_params (other key word params):
                Params to override model's global_params.
                Optional key:
                    'width_coefficient', 'depth_coefficient',
                    'image_size', 'dropout_rate',
                    'batch_norm_momentum',
                    'batch_norm_epsilon', 'drop_connect_rate',
                    'depth_divisor', 'min_depth'
        Returns:
            A pretrained efficientnet model.
        """
        model = cls.from_name(model_name, num_classes=num_classes, **override_params)
        load_pretrained_weights(model, model_name, weights_path=weights_path,
                                load_fc=(num_classes == 1000), advprop=advprop)
        model._change_in_channels(in_channels)
        return model

    @classmethod
    def get_image_size(cls, model_name):
        """Get the input image size for a given efficientnet model.
        Args:
            model_name (str): Name for efficientnet.
        Returns:
            Input image size (resolution).
        """
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name):
        """Validates model name.
        Args:
            model_name (str): Name for efficientnet.
        Returns:
            bool: Is a valid name or not.
        """
        if model_name not in VALID_MODELS:
            raise ValueError('model_name should be one of: ' + ', '.join(VALID_MODELS))

    def _change_in_channels(self, in_channels):
        """Adjust model's first convolution layer to in_channels, if in_channels not equals 3.
        Args:
            in_channels (int): Input data's channel number.
        """
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size)
            out_channels = round_filters(32, self._global_params)
            self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)

EfficientNet-PyTorch/efficientnet_pytorch/utils.py

"""utils.py - Helper functions for building the model and for loading model parameters.
   These helper functions are built to mirror those in the official TensorFlow implementation.
"""

# Author: lukemelas (github username)
# Github repo: https://github.com/lukemelas/EfficientNet-PyTorch
# With adjustments and added comments by workingcoder (github username).

import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo


################################################################################
# Help functions for model architecture
################################################################################

# GlobalParams and BlockArgs: Two namedtuples
# Swish and MemoryEfficientSwish: Two implementations of the method
# round_filters and round_repeats:
#     Functions to calculate params for scaling model width and depth ! ! !
# get_width_and_height_from_size and calculate_output_image_size
# drop_connect: A structural design
# get_same_padding_conv2d:
#     Conv2dDynamicSamePadding
#     Conv2dStaticSamePadding
# get_same_padding_maxPool2d:
#     MaxPool2dDynamicSamePadding
#     MaxPool2dStaticSamePadding
#     It's an additional function, not used in EfficientNet,
#     but can be used in other model (such as EfficientDet).

# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
    'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate',
    'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon',
    'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])

# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
    'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
    'input_filters', 'output_filters', 'se_ratio', 'id_skip'])

# Set GlobalParams and BlockArgs's defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)

# Swish activation function
if hasattr(nn, 'SiLU'):
    Swish = nn.SiLU
else:
    # For compatibility with old PyTorch versions
    class Swish(nn.Module):
        def forward(self, x):
            return x * torch.sigmoid(x)


# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_tensors[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))


class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        return SwishImplementation.apply(x)


def round_filters(filters, global_params):
    """Calculate and round number of filters based on width multiplier.
       Use width_coefficient, depth_divisor and min_depth of global_params.
    Args:
        filters (int): Filters number to be calculated.
        global_params (namedtuple): Global params of the model.
    Returns:
        new_filters: New filters number after calculating.
    """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    # TODO: modify the params names.
    #       maybe the names (width_divisor,min_width)
    #       are more suitable than (depth_divisor,min_depth).
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor  # pay attention to this line when using min_depth
    # follow the formula transferred from official TensorFlow implementation
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """Calculate module's repeat number of a block based on depth multiplier.
       Use depth_coefficient of global_params.
    Args:
        repeats (int): num_repeat to be calculated.
        global_params (namedtuple): Global params of the model.
    Returns:
        new repeat: New repeat number after calculating.
    """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    # follow the formula transferred from official TensorFlow implementation
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, p, training):
    """Drop connect.
    Args:
        input (tensor: BCWH): Input of this structure.
        p (float: 0.0~1.0): Probability of drop connection.
        training (bool): The running mode.
    Returns:
        output: Output after drop connection.
    """
    assert 0 <= p <= 1, 'p must be in range of [0,1]'

    if not training:
        return inputs

    batch_size = inputs.shape[0]
    keep_prob = 1 - p

    # generate binary_tensor mask according to probability (p for 0, 1-p for 1)
    random_tensor = keep_prob
    random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
    binary_tensor = torch.floor(random_tensor)

    output = inputs / keep_prob * binary_tensor
    return output


def get_width_and_height_from_size(x):
    """Obtain height and width from x.
    Args:
        x (int, tuple or list): Data size.
    Returns:
        size: A tuple or list (H,W).
    """
    if isinstance(x, int):
        return x, x
    if isinstance(x, list) or isinstance(x, tuple):
        return x
    else:
        raise TypeError()


def calculate_output_image_size(input_image_size, stride):
    """Calculates the output image size when using Conv2dSamePadding with a stride.
       Necessary for static padding. Thanks to mannatsingh for pointing this out.
    Args:
        input_image_size (int, tuple or list): Size of input image.
        stride (int, tuple or list): Conv2d operation's stride.
    Returns:
        output_image_size: A list [H,W].
    """
    if input_image_size is None:
        return None
    image_height, image_width = get_width_and_height_from_size(input_image_size)
    stride = stride if isinstance(stride, int) else stride[0]
    image_height = int(math.ceil(image_height / stride))
    image_width = int(math.ceil(image_width / stride))
    return [image_height, image_width]


# Note:
# The following 'SamePadding' functions make output size equal ceil(input size/stride).
# Only when stride equals 1, can the output size be the same as input size.
# Don't be confused by their function names ! ! !

def get_same_padding_conv2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.
    Args:
        image_size (int or tuple): Size of the image.
    Returns:
        Conv2dDynamicSamePadding or Conv2dStaticSamePadding.
    """
    if image_size is None:
        return Conv2dDynamicSamePadding
    else:
        return partial(Conv2dStaticSamePadding, image_size=image_size)


class Conv2dDynamicSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow, for a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    # Tips for 'SAME' mode padding.
    #     Given the following:
    #         i: width or height
    #         s: stride
    #         k: kernel size
    #         d: dilation
    #         p: padding
    #     Output after Conv2d:
    #         o = floor((i+p-((k-1)*d+1))/s+1)
    # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),
    # => p = (i-1)*s+((k-1)*d+1)-i

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
        super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)  # change the output size according to stride ! ! !
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


class Conv2dStaticSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    # With the same calculation as Conv2dDynamicSamePadding

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):
        super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2,
                                                pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
        return x


def get_same_padding_maxPool2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.
    Args:
        image_size (int or tuple): Size of the image.
    Returns:
        MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding.
    """
    if image_size is None:
        return MaxPool2dDynamicSamePadding
    else:
        return partial(MaxPool2dStaticSamePadding, image_size=image_size)


class MaxPool2dDynamicSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False):
        super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                            self.dilation, self.ceil_mode, self.return_indices)


class MaxPool2dStaticSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    def __init__(self, kernel_size, stride, image_size=None, **kwargs):
        super().__init__(kernel_size, stride, **kwargs)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                         self.dilation, self.ceil_mode, self.return_indices)
        return x


################################################################################
# Helper functions for loading model params
################################################################################

# BlockDecoder: A Class for encoding and decoding BlockArgs
# efficientnet_params: A function to query compound coefficient
# get_model_params and efficientnet:
#     Functions to get BlockArgs and GlobalParams for efficientnet
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
# load_pretrained_weights: A function to load pretrained weights

class BlockDecoder(object):
    """Block Decoder for readability,
       straight from the official TensorFlow repository.
    """

    @staticmethod
    def _decode_block_string(block_string):
        """Get a block through a string notation of arguments.
        Args:
            block_string (str): A string notation of arguments.
                                Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.
        Returns:
            BlockArgs: The namedtuple defined at the top of this file.
        """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        assert (('s' in options and len(options['s']) == 1) or
                (len(options['s']) == 2 and options['s'][0] == options['s'][1]))

        return BlockArgs(
            num_repeat=int(options['r']),
            kernel_size=int(options['k']),
            stride=[int(options['s'][0])],
            expand_ratio=int(options['e']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            se_ratio=float(options['se']) if 'se' in options else None,
            id_skip=('noskip' not in block_string))

    @staticmethod
    def _encode_block_string(block):
        """Encode a block to a string.
        Args:
            block (namedtuple): A BlockArgs type argument.
        Returns:
            block_string: A String form of BlockArgs.
        """
        args = [
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
            'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """Decode a list of string notations to specify blocks inside the network.
        Args:
            string_list (list[str]): A list of strings, each string is a notation of block.
        Returns:
            blocks_args: A list of BlockArgs namedtuples of block args.
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """Encode a list of BlockArgs to a list of strings.
        Args:
            blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.
        Returns:
            block_strings: A list of strings, each string is a notation of block.
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def efficientnet_params(model_name):
    """Map EfficientNet model name to parameter coefficients.
    Args:
        model_name (str): Model name to be queried.
    Returns:
        params_dict[model_name]: A (width,depth,res,dropout) tuple.
    """
    params_dict = {
        # Coefficients:   width,depth,res,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-l2': (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None,
                 dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True):
    """Create BlockArgs and GlobalParams for efficientnet model.
    Args:
        width_coefficient (float)
        depth_coefficient (float)
        image_size (int)
        dropout_rate (float)
        drop_connect_rate (float)
        num_classes (int)
        Meaning as the name suggests.
    Returns:
        blocks_args, global_params.
    """

    # Blocks args for the whole model(efficientnet-b0 by default)
    # It will be modified in the construction of EfficientNet Class according to model
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        image_size=image_size,
        dropout_rate=dropout_rate,

        num_classes=num_classes,
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        drop_connect_rate=drop_connect_rate,
        depth_divisor=8,
        min_depth=None,
        include_top=include_top,
    )

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """Get the block args and global params for a given model name.
    Args:
        model_name (str): Model's name.
        override_params (dict): A dict to modify global_params.
    Returns:
        blocks_args, global_params
    """
    if model_name.startswith('efficientnet'):
        w, d, s, p = efficientnet_params(model_name)
        # note: all models have drop connect rate = 0.2
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)
    else:
        raise NotImplementedError('model name is not pre-defined: {}'.format(model_name))
    if override_params:
        # ValueError will be raised here if override_params has fields not included in global_params.
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


# train with Standard methods
# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks)
url_map = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
}

# train with Adversarial Examples(AdvProp)
# check more details in paper(Adversarial Examples Improve Image Recognition)
url_map_advprop = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth',
    'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth',
}

# TODO: add the petrained weights url map of 'efficientnet-l2'


def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True):
    """Loads pretrained weights from weights path or download using url.
    Args:
        model (Module): The whole model of efficientnet.
        model_name (str): Model name of efficientnet.
        weights_path (None or str):
            str: path to pretrained weights file on the local disk.
            None: use pretrained weights downloaded from the Internet.
        load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
        advprop (bool): Whether to load pretrained weights
                        trained with advprop (valid when weights_path is None).
    """
    if isinstance(weights_path, str):
        state_dict = torch.load(weights_path)
    else:
        # AutoAugment or Advprop (different preprocessing)
        url_map_ = url_map_advprop if advprop else url_map
        state_dict = model_zoo.load_url(url_map_[model_name])

    if load_fc:
        ret = model.load_state_dict(state_dict, strict=False)
        assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        ret = model.load_state_dict(state_dict, strict=False)
        assert set(ret.missing_keys) == set(
            ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys)

    if verbose:
        print('Loaded pretrained weights for {}'.format(model_name))

七、EfficientNet V2

【机器学习】详解 EfficientNet_第26张图片

【机器学习】详解 EfficientNet_第27张图片

【机器学习】详解 EfficientNet_第28张图片

【机器学习】详解 EfficientNet_第29张图片

【机器学习】详解 EfficientNet_第30张图片

【机器学习】详解 EfficientNet_第31张图片

【机器学习】详解 EfficientNet_第32张图片

【机器学习】详解 EfficientNet_第33张图片


参考资料:

【论文解读】一文看懂EfficientnetB0~B7模型所有细节 - 知乎

后ResNet时代的顶流EfficientNet

你可能感兴趣的:(【机器学习与深度学习】,机器学习,深度学习,人工智能)