DPN这个模型融入了三种基础模型,inception,resnet,densenet。有inception的宽度,又有resnet的shortcut利用,和densenet的浅层特征重复利用
tensor的切片操作:a 是 [2,3,5,5], 那么 a[:,:1,:,:] 就是 [2,1,5,5]。a,b 都是 [2,3,5,5] ,那么 torch.cat([a[:,:1,:,:] + b[:,:1,:,:]], dim=1) 还是 2, 1, 5, 5], 数据相加,值大小的变化。但 torch.cat([a[:,:1,:,:], b[:,:1,:,:]], dim=1) 是 [2, 2, 5, 5],拼接了一个特征图。通道数的改变。
# DPN这个模型融入了三种基础模型,inception,resnet,densenet。
# 有inception的宽度,又有resnet的shortcut利用,和densenet的浅层特征重复利用
# tensor的切片操作:a 是 [2,3,5,5], 那么 a[:,:1,:,:] 就是 [2,1,5,5]
# a,b 都是 [2,3,5,5] ,那么 torch.cat([a[:,:1,:,:] + b[:,:1,:,:]], dim=1) 还是 2, 1, 5, 5], 数据相加,值大小的变化
# 但 torch.cat([a[:,:1,:,:], b[:,:1,:,:]], dim=1) 是 [2, 2, 5, 5],拼接了一个特征图。通道数的改变
from time import sleep
import torch
import torch.nn as nn
class block(nn.Module):
def __init__(self, in_channels, mid_channels, out_channels, dense_channels, stride, is_shortcut=False):
# in_channels,是输入通道数,mid_channel是中间经历的通道数,out_channels是经过一次板块之后的输出通道数。
# dense_channels设置这个参数的原因就是一边进行着resnet方式的卷进运算,另一边也同时进行着dense的卷积计算,之后特征图融合形成新的特征图
super().__init__()
self.is_shortcut = is_shortcut
self.out_channels = out_channels
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(mid_channels, mid_channels, kernel_size=3, stride=stride, padding=1, groups=32, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(mid_channels, out_channels+dense_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels+dense_channels)
)
if self.is_shortcut:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels+dense_channels, kernel_size=3, padding=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels+dense_channels)
)
def forward(self, x):
a = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.is_shortcut:
a = self.shortcut(a)
d = self.out_channels
x = torch.cat([a[:,:d,:,:] + x[:,:d,:,:], a[:,d:,:,:], x[:,d:,:,:]], dim=1) # 记住拼接方法
# 有一步的 a[:,d:,:,:], x[:,d:,:,:] 不对 原因:conv3 的设置不对
x = self.relu(x)
return x
def DPN92():
cfg = {
'mid_channels': (96,192,384,768),
'out_channels': (256,512,1024,2048),
'num': (3,4,20,3),
'dense_channels': (16,32,24,128),
'classes': (10)
}
return DPN(cfg)
class DPN(nn.Module):
def __init__(self, cfg):
super().__init__()
mid_channels = cfg['mid_channels']
out_channels = cfg['out_channels']
num = cfg['num']
dense_channels = cfg['dense_channels']
self.in_channels = 64 # 输入通道64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, 7, 2, 3, bias=False), # 把3变成64
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(3, 2, 1)
)
self.conv2 = self._make_layers(mid_channels[0], out_channels[0], dense_channels[0], 1, num[0]) # stride=1
self.conv3 = self._make_layers(mid_channels[1], out_channels[1], dense_channels[1], 2, num[1])
self.conv4 = self._make_layers(mid_channels[2], out_channels[2], dense_channels[2], 2, num[2])
self.conv5 = self._make_layers(mid_channels[3], out_channels[3], dense_channels[3], 2, num[3])
self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(cfg['out_channels'][3] + (num[3]+1) * cfg['dense_channels'][3], cfg['classes']) # fc层需要计算
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.global_avgpool(x)
x = torch.flatten(x, 1) # 展开
x = self.fc(x)
return x
def _make_layers(self, mid_channels, out_channels, dense_channels, stride, num):
layers = []
layers.append(block(self.in_channels, mid_channels, out_channels, dense_channels, stride=stride, is_shortcut=True))
# block_1里面is_shortcut=True就是resnet中的shortcut连接,将浅层的特征进行一次卷积之后与进行三次卷积的特征图相加
# 后面几次相同的板块is_shortcut=False简单的理解就是一个多次重复的板块,第一次利用就可以满足浅层特征的利用。后面重复的不在需要
self.in_channels = out_channels + dense_channels*2
# self.in_channels = out_channels + 2*dense_channels由于里面包含dense这种一直在叠加的特征图计算,
# 所以第一次是2倍的dense_channels,每次一都会多出一倍,所以有(i+2)*dense_channels
for i in range(1,num):
layers.append(block(self.in_channels, mid_channels, out_channels, dense_channels, stride=1))
self.in_channels = out_channels + (i+2)*dense_channels
return nn.Sequential(*layers)
if __name__ == '__main__':
net = DPN92()
x = torch.rand((10, 3, 224, 224))
for name,layer in net.named_children():
if name != 'fc':
x = layer(x)
print(name, 'output shape:', x.shape)
else:
# x = x.view(x.size(0), -1)
x = torch.flatten(x, 1) # 一模一样
x = layer(x)
print(name, 'output shape:', x.shape)
参考文章:
pytorch实现DPN 最详细的全面讲解_视觉盛宴的博客-CSDN博客