Weight Excitation: Built-in Attention Mechanisms in Convolutional Neural Networks |
ECCV 2020 |
注意力机制 |
无 |
未读 |
8.5 |
与SENet互补提升,华为诺亚提出自注意力新机制:Weight Excitation |
|
时间 |
方向 |
源 |
√ |
分数 |
资料 |
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks |
arXiv 2020 |
知识蒸馏 |
MEAL-V2 |
未读 |
分数 |
无需额外数据、Tricks、架构调整,CMU开源首个将ResNet50精度提升至80%+新方法 |
Role of Orthogonality Constraints in Improving Properties of Deep Networks for Image Classification |
2020.09.22 |
模型鲁棒性 |
无 |
未读 |
8 |
【正交球面正则化】让模型不偏不倚更加鲁棒的简单粗暴神器,推荐阅读和使用!!! |
Learning Image-adaptive 3D Lookup Tables for High Performance Photo enhancement in Real-time |
2020 |
图像增强 |
3DLUT |
未读 |
8 |
图像增强领域大突破!以1.66ms的速度处理4K图像,港理工提出图像自适应的3DLUT |
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations |
CVPR 2018 |
适用于多种退化模型的单个超分模型 |
有 |
√ |
8.5 |
1,2 |
Spatial Transformer Networks |
NIPS 2015 |
平移不变性 |
torch |
未读 |
8 |
详细解读Spatial Transformer Networks(STN) |
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks |
ICML 2019 |
网络架构设计 |
PyTorch Tensorflow |
√ |
8.5 |
简短的翻译 |
Image Super-Resolution via Dual-State Recurrent Networks |
CVPR 2018 |
双状态递归超分 |
DSRN |
√ |
8 |
相关资料 |
Multi-scale Residual Network for Image Super-Resolution |
ECCV 2018 |
适用于多个scale的单个超分模型 |
MSRN |
√ |
8.5 |
|
Invertible Image Rescaling |
ECCV 2020 |
可逆的图像缩放、高低频信息的分离和利用 |
IRN |
√ |
8.5 |
ECCV 2020 Oral·可逆图像缩放:完美恢复降采样后的高清图片 |
Single Image Super-Resolution via a Holistic Attention Network |
ECCV 2020 |
整体注意力机制 |
无 |
√ |
9 |
ECCV2020最新图像超分辨重建文章 |
A Deep Journey into Super-resolution:A Survey |
ACM Computing Surveys 2020 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
Brief Survey of Single Image Super-Resolution Reconstruction Based on Deep Learning Approaches |
2020 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
Deep Learning for Image Super-resolution:A Survey |
IEEE TPAMI 2020 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
A Survey of Image Super Resolution Based on CNN |
2020 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
Deep Learning for Image Super-resolution:A Survey |
2020 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
Deep Learning Based Single Image Super-resolution:A Survey |
2019 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
Deep learning for single image super-resolution:A brief review |
2019 |
CNN-based SISR综述 |
无 |
√ |
8.5 |
资料 |
ResNeSt- Split-Attention Networks |
2020 |
网络架构设计 |
ResNeSt |
√ |
8 |
【论文笔记】张航和李沐等提出:ResNeSt: Split-Attention Networks(ResNet改进版本) |
Single Image Super-Resolution via Residual Neuron Attention Networks |
2020 |
RNAN、注意力 |
无 |
√ |
8.5 |
资料 |
Learning with Privileged Information for Efficient Image Super-Resolution |
ECCV 2020 |
PISR、基于知识蒸馏的超分 |
PISR |
√ |
8 |
[ECCV2020] PISR - 把蒸馏Distillation成功应用到超分任务 |
Dynamic Convolutions- Exploiting Spatial Sparsity for Faster Inference |
CVPR 2020 |
动态卷积 |
dynconv |
√ |
8 |
资料 |
Rethinking Data Augmentation for Image Super-resolution- A Comprehensive Analysis and a New Strategy |
CVPR 2020 |
专用与超分领域的DA |
cutblur |
√ |
8.5 |
资料 |
Learning Texture Transformer Network for Image Super-Resolution |
CVPR 2020 |
TTSR、纹理迁移 |
TTSR |
√ |
8 |
资料 |
Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining |
CVPR 2020 |
CL-NL注意力 |
CL-NL |
√ |
8.5 |
资料 |
Explorable Super Resolution |
CVPR 2020 |
超分 |
开源 |
√ |
7.8 |
资料 |
Residual Feature Aggregation Network for Image Super-Resolution |
CVPR 2020 |
RFANet、空间域注意力 |
无 |
√ |
8.5 |
资料 |
Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution |
CVPR 2020 |
DSR、通道域注意力、深度图超分 |
无 |
√ |
8.5 |
资料 |
Deep Iterative Residual Convolutional Network for Single Image Super-Resolution |
arXiv 2020 |
迭代残差 |
无 |
√ |
8 |
资料 |
Attention Cube Network for Image Restoration |
ACM MM 2020 |
A-CubeNet、立体注意力机制 |
无 |
√ |
8.5 |
资料 |
Gcnet- Non-local networks meet squeeze-excitation networks and beyond |
ICCVW 2019 |
Gcnet、NL注意力 |
GCNet |
√ |
8 |
GCNet:当Non-local遇见SENet |
Feedback Network for Image Super-Resolution |
CVPR 2019 |
SRFBN、反馈机制 |
SRFBN |
√ |
8.5 |
资料SRFBN的PyTorch实现 |
Selective Kernel Networks |
CVPR 2019 |
SKNet、注意力 |
SKNet |
√ |
7.9 |
资料 |
Second-order attention network for single image super-resolution |
CVPR 2019 |
SAN、二阶注意力机制 |
SAN |
√ |
8 |
资料 |
Residual Non-local Attention Networks for Image Restoration |
ICLR 2019 |
RNAN、NL注意力、图像修复 |
无 |
√ |
8.5 |
资料Residual Non-local Attention Networks for Image Restoration |
NASNet- A Neuron Attention Stage-by-Stage Net for Single Image Deraining |
2019 |
NASNet、多阶段神经元注意力机制、去雨 |
无 |
√ |
8.5 |
资料 |
Lightweight Image Super-Resolution with Information Multi-distillation Network |
ACM MM 2019 |
IMDN、通道分裂、轻量 |
IMDN |
√ |
8 |
资料 |
Hybrid Residual Attention Network for Single Image Super Resolution |
IEEE Access 2019 |
HRAN、残差、注意力 |
HRAN |
√ |
8 |
资料 |
DANet- Dual Attention Network for Scene Segmentation |
2019 CVPR |
DANet、注意力、语义分割 |
DANet |
√ |
8 |
资料 |
Efficient Single Image Super-Resolution via Hybrid Residual Feature Learning with Compact Back-Projection Network |
CVPRW 2019 |
CBPN、反向投影 |
无 |
√ |
7 |
无 |
Bag of Tricks for Image Classification with Convolutional Neural Networks |
2018 |
训练技巧 |
Bag of Tricks |
√ |
8.5 |
【模型性能杀器解读】如果项目的模型遇到瓶颈,用这些Tricks就对了!!! |
Wide Activation for Efficient and Accurate Image Super-Resolution |
2018 |
WDSR、宽、残差 |
WDSR |
√ |
8.5 |
资料 |
Residual dense network for image super-resolution |
CVPR 2018 |
RDN、残差、稠密连接 |
RDN |
√ |
8 |
资料 |
Image Super-Resolution Using Very Deep Residual Channel Attention Networks |
ECCV 2018 |
RCAN、通道注意力 |
RCAN |
√ |
8.5 |
资料 |
RAM- Residual Attention Module for Single Image Super-Resolution |
2018 |
RAM、注意力 |
无 |
√ |
8.5 |
资料 |
PSANet:Point-wise Spatial Attention Network for Scene Parsing |
ECCV 2018 |
PSANet、空间注意力 |
PSANet |
√ |
8 |
资料 |
Non-local recurrent network for image restoration |
NIPS 2018 |
NLRN、NL注意力 |
NLRN |
√ |
8.5 |
资料 |
Non-local Neural Networks |
2018 |
NLNet、NL注意力 |
NLNet |
√ |
8.5 |
资料 |
Fast and accurate image super-resolution with deep laplacian pyramid networks |
2018 |
MS-LapSRN、拉普拉斯金字塔 |
MS-LapSRN |
√ |
8 |
资料 |
Fast and Accurate Single Image Super-Resolution via Information Distillation Network |
CVPR 2018 |
IDN、轻量 |
IDN |
√ |
8 |
资料 |
Deep back-projection networks for super-resolution |
CVPR 2018 |
D-DBPN、反向投影 |
D-DBPN |
√ |
8.5 |
资料 |
Deep Back-Projection Networks for Single Image Super-resolution |
2020 |
方向 |
源 |
√ |
分数 |
资料 |
Channel-wise and Spatial Feature Modulation Network for Single Image Super-Resolution |
2018 |
CSAR、注意力 |
无 |
√ |
8.5 |
资料 |
CBAM- Convolutional Block Attention Module |
ECCV 2018 |
CBAM、注意力 |
CBAM |
√ |
9 |
资料 |
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network |
ECCV 2018 |
CARN、级联、轻量 |
CARN |
√ |
8 |
资料 |
BAM- Bottleneck Attention Module |
BMVC 2018 |
BAM、注意力 |
BAM |
√ |
8.5 |
资料 |
A^2-Nets- Double Attention Networks |
NIPS 2018 |
A^2-Nets、双注意力 |
A2-Nets |
√ |
8 |
【文献阅读01】A2-Nets: Double Attention Networks、 【文献阅读02】A2-Nets: Double Attention Networks |
|
|
|
|
|
|
|
|
时间 |
方向 |
源 |
√ |
分数 |
资料 |