【深度学习笔记】超分辨率方向相关论文汇总【偶尔更新】

  • 说明:除了超分领域的论文外,同时也会附加一些backbone网络或者building block、去噪(Denoise)、去雾(Dehaze)、去雨(Derain)去模糊(Deblur)、修复(Restoration)等对超分领域有启发的相关领域论文!
  • 我自己是一枚科研小白,熬肝整理,希望能给大家一些帮助,如果各路大神有比较好的见解、相关资料等等,欢迎在评论区补充,多多交流!
标题 来源&时间 方向 源码 状态 推荐指数 相关资料
Weight Excitation: Built-in Attention Mechanisms in Convolutional Neural Networks ECCV 2020 注意力机制 未读 8.5 与SENet互补提升,华为诺亚提出自注意力新机制:Weight Excitation
时间 方向 分数 资料
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks arXiv 2020 知识蒸馏 MEAL-V2 未读 分数 无需额外数据、Tricks、架构调整,CMU开源首个将ResNet50精度提升至80%+新方法
Role of Orthogonality Constraints in Improving Properties of Deep Networks for Image Classification 2020.09.22 模型鲁棒性 未读 8 【正交球面正则化】让模型不偏不倚更加鲁棒的简单粗暴神器,推荐阅读和使用!!!
Learning Image-adaptive 3D Lookup Tables for High Performance Photo enhancement in Real-time 2020 图像增强 3DLUT 未读 8 图像增强领域大突破!以1.66ms的速度处理4K图像,港理工提出图像自适应的3DLUT
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations CVPR 2018 适用于多种退化模型的单个超分模型 8.5 1,2
Spatial Transformer Networks NIPS 2015 平移不变性 torch 未读 8 详细解读Spatial Transformer Networks(STN)
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks ICML 2019 网络架构设计 PyTorch Tensorflow 8.5 简短的翻译
Image Super-Resolution via Dual-State Recurrent Networks CVPR 2018 双状态递归超分 DSRN 8 相关资料
Multi-scale Residual Network for Image Super-Resolution ECCV 2018 适用于多个scale的单个超分模型 MSRN 8.5
Invertible Image Rescaling ECCV 2020 可逆的图像缩放、高低频信息的分离和利用 IRN 8.5 ECCV 2020 Oral·可逆图像缩放:完美恢复降采样后的高清图片
Single Image Super-Resolution via a Holistic Attention Network ECCV 2020 整体注意力机制 9 ECCV2020最新图像超分辨重建文章
A Deep Journey into Super-resolution:A Survey ACM Computing Surveys 2020 CNN-based SISR综述 8.5 资料
Brief Survey of Single Image Super-Resolution Reconstruction Based on Deep Learning Approaches 2020 CNN-based SISR综述 8.5 资料
Deep Learning for Image Super-resolution:A Survey IEEE TPAMI 2020 CNN-based SISR综述 8.5 资料
A Survey of Image Super Resolution Based on CNN 2020 CNN-based SISR综述 8.5 资料
Deep Learning for Image Super-resolution:A Survey 2020 CNN-based SISR综述 8.5 资料
Deep Learning Based Single Image Super-resolution:A Survey 2019 CNN-based SISR综述 8.5 资料
Deep learning for single image super-resolution:A brief review 2019 CNN-based SISR综述 8.5 资料
ResNeSt- Split-Attention Networks 2020 网络架构设计 ResNeSt 8 【论文笔记】张航和李沐等提出:ResNeSt: Split-Attention Networks(ResNet改进版本)
Single Image Super-Resolution via Residual Neuron Attention Networks 2020 RNAN、注意力 8.5 资料
Learning with Privileged Information for Efficient Image Super-Resolution ECCV 2020 PISR、基于知识蒸馏的超分 PISR 8 [ECCV2020] PISR - 把蒸馏Distillation成功应用到超分任务
Dynamic Convolutions- Exploiting Spatial Sparsity for Faster Inference CVPR 2020 动态卷积 dynconv 8 资料
Rethinking Data Augmentation for Image Super-resolution- A Comprehensive Analysis and a New Strategy CVPR 2020 专用与超分领域的DA cutblur 8.5 资料
Learning Texture Transformer Network for Image Super-Resolution CVPR 2020 TTSR、纹理迁移 TTSR 8 资料
Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining CVPR 2020 CL-NL注意力 CL-NL 8.5 资料
Explorable Super Resolution CVPR 2020 超分 开源 7.8 资料
Residual Feature Aggregation Network for Image Super-Resolution CVPR 2020 RFANet、空间域注意力 8.5 资料
Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution CVPR 2020 DSR、通道域注意力、深度图超分 8.5 资料
Deep Iterative Residual Convolutional Network for Single Image Super-Resolution arXiv 2020 迭代残差 8 资料
Attention Cube Network for Image Restoration ACM MM 2020 A-CubeNet、立体注意力机制 8.5 资料
Gcnet- Non-local networks meet squeeze-excitation networks and beyond ICCVW 2019 Gcnet、NL注意力 GCNet 8 GCNet:当Non-local遇见SENet
Feedback Network for Image Super-Resolution CVPR 2019 SRFBN、反馈机制 SRFBN 8.5 资料SRFBN的PyTorch实现
Selective Kernel Networks CVPR 2019 SKNet、注意力 SKNet 7.9 资料
Second-order attention network for single image super-resolution CVPR 2019 SAN、二阶注意力机制 SAN 8 资料
Residual Non-local Attention Networks for Image Restoration ICLR 2019 RNAN、NL注意力、图像修复 8.5 资料Residual Non-local Attention Networks for Image Restoration
NASNet- A Neuron Attention Stage-by-Stage Net for Single Image Deraining 2019 NASNet、多阶段神经元注意力机制、去雨 8.5 资料
Lightweight Image Super-Resolution with Information Multi-distillation Network ACM MM 2019 IMDN、通道分裂、轻量 IMDN 8 资料
Hybrid Residual Attention Network for Single Image Super Resolution IEEE Access 2019 HRAN、残差、注意力 HRAN 8 资料
DANet- Dual Attention Network for Scene Segmentation 2019 CVPR DANet、注意力、语义分割 DANet 8 资料
Efficient Single Image Super-Resolution via Hybrid Residual Feature Learning with Compact Back-Projection Network CVPRW 2019 CBPN、反向投影 7
Bag of Tricks for Image Classification with Convolutional Neural Networks 2018 训练技巧 Bag of Tricks 8.5 【模型性能杀器解读】如果项目的模型遇到瓶颈,用这些Tricks就对了!!!
Wide Activation for Efficient and Accurate Image Super-Resolution 2018 WDSR、宽、残差 WDSR 8.5 资料
Residual dense network for image super-resolution CVPR 2018 RDN、残差、稠密连接 RDN 8 资料
Image Super-Resolution Using Very Deep Residual Channel Attention Networks ECCV 2018 RCAN、通道注意力 RCAN 8.5 资料
RAM- Residual Attention Module for Single Image Super-Resolution 2018 RAM、注意力 8.5 资料
PSANet:Point-wise Spatial Attention Network for Scene Parsing ECCV 2018 PSANet、空间注意力 PSANet 8 资料
Non-local recurrent network for image restoration NIPS 2018 NLRN、NL注意力 NLRN 8.5 资料
Non-local Neural Networks 2018 NLNet、NL注意力 NLNet 8.5 资料
Fast and accurate image super-resolution with deep laplacian pyramid networks 2018 MS-LapSRN、拉普拉斯金字塔 MS-LapSRN 8 资料
Fast and Accurate Single Image Super-Resolution via Information Distillation Network CVPR 2018 IDN、轻量 IDN 8 资料
Deep back-projection networks for super-resolution CVPR 2018 D-DBPN、反向投影 D-DBPN 8.5 资料
Deep Back-Projection Networks for Single Image Super-resolution 2020 方向 分数 资料
Channel-wise and Spatial Feature Modulation Network for Single Image Super-Resolution 2018 CSAR、注意力 8.5 资料
CBAM- Convolutional Block Attention Module ECCV 2018 CBAM、注意力 CBAM 9 资料
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network ECCV 2018 CARN、级联、轻量 CARN 8 资料
BAM- Bottleneck Attention Module BMVC 2018 BAM、注意力 BAM 8.5 资料
A^2-Nets- Double Attention Networks NIPS 2018 A^2-Nets、双注意力 A2-Nets 8 【文献阅读01】A2-Nets: Double Attention Networks、 【文献阅读02】A2-Nets: Double Attention Networks
时间 方向 分数 资料

你可能感兴趣的:(论文阅读,学习笔记,深度学习)