神经网络希望输入数据最好是在-1到1之间,最好是正态分布,这样训练的效果最好。所以我们需要把图像的像素值进行转换。
from torchvision import transforms
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
transforms.ToTensor():将图转化为Channel*Width*Height的张量。
transforms.Normalize((0.1307, ), (0.3081, )):前者是均值,后者是标准差(对数据集计算得出)。即使Tensor中的数值符合01分布。
torch.Tensor默认是torch.FloatTensor是32位浮点类型数据,torch.LongTensor是64位整型
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
train_dataset = datasets.MNIST(root='./mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
输入张量是(N, 1, 28, 28)。但在全连接模型中,需要输入张量为二维矩阵。
x=x.view(-1, 784):将图片一行行排列,一张图片有784个像素点,则得到的二维矩阵每一行有784列。-1表示自动计算。即通过输入的张量算出一共有多少个数值,然后除以784,得到行数。
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
test的时候不需要backward操作,所以forward过程中不用计算梯度。
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
# forward + backwar + updata
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
# outputs是一个Tensor
# max函数参数:dim=1表示沿着第一个维度。行是第0个维度,列是第1个维度。
# max函数返回:最大值,最大值下标
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
# labels = torch.Tensor(labels)
total += labels.size(0) # 样本数
correct += (predicted == labels).sum().item() # 张量间的比较运算
print('Accuracy on test set: %d %%' % (100 * correct / total))
for epoch in range(10):
train(epoch)
test()