代码随想录算法训练营第二天 |题977 题209 题59

1.双指针法

leetcode 题977

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

1.1 暴力解法:先求出数组所有值的平方,然后再排序。

1.2 双指针法

i指向初始位置,j指向终止位置,定义一个新数组result,让k数组指向终止位置(此处注意,result数组赋值的方式是从末尾即最大值开始赋值,若从初始位置赋值无法正确排列)。

代码随想录算法训练营第二天 |题977 题209 题59_第1张图片

class Solution {
public:
    vector sortedSquares(vector& nums) {
                int k = nums.size()-1;
                int i,j;
                vector temp(nums.size(), 0); //定义了size个整型元素的向量,且给出每个元素的初值为0
                for(i = 0, j = nums.size()-1; i<=j;)
                {
                    if(nums[i] * nums[i] >= nums[j] * nums[j])
                    {
                        temp[k] = nums[i] * nums[i]; //从大到小赋到temp的末尾到开头
                        i++;
                    }   
                    else
                    {
                        temp[k] = nums[j] * nums[j];
                        j--;
                    }      
                    k-=1;       
                }
                return temp;
    }
};
  1. 长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

来源:力扣(LeetCode)题209
链接:https://leetcode.cn/problems/minimum-size-subarray-sum

2.1自己解法:

class Solution {
public:
    int minSubArrayLen(int target, vector& nums) {
        int i,len1 = 0;
        int sum = 0;
        int j =0;
        for(i =0; i < nums.size(); i++)
        {
            sum += nums[i];
            j ++;
            if(sum >= target && len1 != 0)
            {
                if (len1 > j)
                {
                    len1 = j;
                    sum = 0;
                    j = 0;
                }
                
            }
            else if(sum >= target && len1 == 0)
            {
                len1 = j;
                sum = 0;
                j = 0;
            }
        }
        return len1;
    }
};

运算结果

分析原因:只考虑了按给出的数组顺序凑子数组,凑完即往下边继续凑,没考虑从任意下标(比如中间)开始凑子数组的情况。

2.2正确解法:滑动窗口。

所谓滑动窗口,就是不断调节子序列的起始位置和终止位置,从而得到我们想要的结果。

暴力解法中,用两个循环,一个循环控制起始位置,一个循环控制终止位置。

而只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置

例如s=7,数组为[2,3,1,2,4,3]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-foAsvZYv-1668772690073)(C:\Users\znfs\Desktop\offer\代码随想录\滑动窗口.gif)]

class Solution {
public:
    int minSubArrayLen(int s, vector& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        for (int j = 0; j < nums.size(); j++) {
            sum += nums[j];
            // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while (sum >= s) {
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

时间复杂度为O(n),虽然是for循环套while循环,但这里主要看每个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素操作两次,所以复杂度为2*n,即O(n)。

3.螺旋矩阵

leetCode 题59

给你一个正整数 n ,生成一个包含 1n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix

3.1 自己写不出来。。。

3.2 正确解法

本题不涉及算法问题,只是用代码模拟螺旋的过程,考察代码的掌控能力。关键在于区间的选择,此题区间左闭右开,坚持循环不变原则。

模拟顺时针画矩阵的过程:

填充上行从左到右
填充右列从上到下
填充下行从右到左
填充左列从下到上

class Solution {
public:
    vector> generateMatrix(int n) {
        vector> res(n, vector(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 1;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};

你可能感兴趣的:(leetcode)