[948]Pandas数据分组的函数应用(df.apply()、df.agg()、df.transform()、df.applymap()、df.groupby().apply())

文章目录

      • apply()
      • 数据聚合agg()
      • 数据转换transform()
      • applymap()
      • groupby().apply()

将自己定义的或其他库的函数应用于Pandas对象:

apply():逐行或逐列应用该函数
agg()和transform():聚合和转换
applymap():逐元素应用函数
groupby().apply():聚合之后应用于某个函数

apply()

  • 介绍

apply函数是pandas里面所有函数中自由度最高的函数。该函数如下:

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

该函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针。

这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据 结构传入给自己实现的函数中,我们在函数中实现对Series不同属性之间的计算,返回一个结果,则apply函数 会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。

  • 样例
import numpy as np
import pandas as pd

if __name__ == '__main__':
    f = lambda x : x.max() - x.min()
    df = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['utah', 'ohio', 'texas', 'oregon']) #columns表述列标, index表述行标
    print(df)

    t1 = df.apply(f) #df.apply(function, axis=0),默认axis=0,表示将一列数据作为Series的数据结构传入给定的function中
    print(t1)

    t2 = df.apply(f, axis=1)
    print(t2)

输出结果如下所示:

b         d         e
utah    1.950737  0.318299  0.387724
ohio    1.584464 -0.082965  0.984757
texas   0.477283 -2.774454 -0.532181
oregon -0.851359 -0.654882  1.026698

b    2.802096
d    3.092753
e    1.558879
dtype: float64

utah      1.632438
ohio      1.667428
texas     3.251737
oregon    1.878057
dtype: float64
  • 性能比较
import numpy as np
import pandas as pd

def my_test(a, b):
    return a + b

if __name__ == '__main__':
    df = pd.DataFrame({'a':np.random.randn(6),
                       'b':['foo', 'bar'] * 3,
                       'c':np.random.randn(6)})

    print(df)

    df['value1'] = df.apply(lambda row: my_test(row['a'], row['c']), axis=1)
    print(df)

    df['vaule2'] = df['a'] + df['c']
    print(df)

输出结果如下:

a    b         c
0 -1.745471  foo  0.723341
1 -0.378998  bar  0.229188
2 -1.468866  foo  0.788046
3 -1.323347  bar  0.323051
4 -1.894372  foo  2.216768
5 -0.649059  bar  0.858149

          a    b         c    value1
0 -1.745471  foo  0.723341 -1.022130
1 -0.378998  bar  0.229188 -0.149810
2 -1.468866  foo  0.788046 -0.680820
3 -1.323347  bar  0.323051 -1.000296
4 -1.894372  foo  2.216768  0.322396
5 -0.649059  bar  0.858149  0.209089

          a    b         c    value1    vaule2
0 -1.745471  foo  0.723341 -1.022130 -1.022130
1 -0.378998  bar  0.229188 -0.149810 -0.149810
2 -1.468866  foo  0.788046 -0.680820 -0.680820
3 -1.323347  bar  0.323051 -1.000296 -1.000296
4 -1.894372  foo  2.216768  0.322396  0.322396
5 -0.649059  bar  0.858149  0.209089  0.209089

注意:当数据量很大时,对于简单的逻辑处理建议方法2(个人处理几百M数据集时,方法1花时200s左右,方法2花时10s)

其中:设置axis = 1参数,可以逐行进行操作;默认axis=0,即逐列进行操作;

对于常见的描述性统计方法,可以直接使用一个字符串进行代替,例df.apply(‘mean’)等价于df.apply(np.mean);

>>> df = pd.read_excel('./input/class.xlsx)
>>> df = df[['score_math','score_music']]
>>> df
   score_math  score_music
0          95           79
1          96           90
2          85           85
3          93           92
4          84           90
5          88           70
6          59           89
7          88           86
8          89           74
 
#对音乐课和数学课逐列求成绩平均分
>>> df.apply(np.mean)
score_math     86.333333
score_music    83.888889
dtype: float64
>>> type(df.apply(np.mean))

 
>>> df['score_math'].apply('mean')
86.33333333333333
>>> type(df['score_math'].apply(np.mean))

 
#逐行求每个学生的平均分
>>> df.apply(np.mean,axis=1)
0    87.0
1    93.0
2    85.0
3    92.5
4    87.0
5    79.0
6    74.0
7    87.0
8    81.5
dtype: float64
>>> type(df.apply(np.mean,axis=1))

apply()的返回结果与所用的函数是相关的:

  • 返回结果是Series对象:如上述例子应用的均值函数,就是每一行或每一列返回一个值;
  • 返回大小相同的DataFrame:如下面自定的lambda函数。
#其中的x可以看作是每一类的Series对象
>>> df.apply(lambda x: x - 5)
   score_math  score_music
0          90           74
1          91           85
2          80           80
3          88           87
4          79           85
5          83           65
6          54           84
7          83           81
8          84           69
>>> type(df.apply(lambda x: x - 5))

数据聚合agg()

  • 数据聚合agg()指任何能够从数组产生标量值的过程;
  • 相当于apply()的特例,可以对pandas对象进行逐行或逐列的处理;
  • 能使用agg()的地方,基本上都可以使用apply()代替。

例:
1)对两门课逐列求平均分

>>> df.agg('mean')
score_math     86.333333
score_music    83.888889
dtype: float64
>>> df.apply('mean')
score_math     86.333333
score_music    83.888889
dtype: float64

2)应用多个函数,可将函数放于一个列表中;

例:对两门课分别求最高分与最低分

>>> df.agg(['max','min'])
     score_math  score_music
max          96           92
min          59           70
>>> df.apply([np.max,'min'])
      score_math  score_music
amax          96           92
min           59           70

3)使用字典可以对特定列应用特定及多个函数;

例:对数学成绩求均值和最小值,对音乐课求最大值

>>> df.agg({'score_math':['mean','min'],'score_music':'max'})
      score_math  score_music
max          NaN         92.0
mean   86.333333          NaN
min    59.000000          NaN

数据转换transform()

特点:使用一个函数后,返回相同大小的Pandas对象

与数据聚合agg()的区别:

  • 数据聚合agg()返回的是对组内全量数据的缩减过程;
  • 数据转换transform()返回的是一个新的全量数据。

注意:df.transform(np.mean)将报错,转换是无法产生聚合结果的

#将成绩减去各课程的平均分,使用apply、agg、transfrom都可以实现
>>> df.transform(lambda x:x-x.mean())
>>> df.apply(lambda x:x-x.mean())
>>> df.agg(lambda x:x-x.mean())
   score_math  score_music
0    8.666667    -4.888889
1    9.666667     6.111111
2   -1.333333     1.111111
3    6.666667     8.111111
4   -2.333333     6.111111
5    1.666667   -13.888889
6  -27.333333     5.111111
7    1.666667     2.111111
8    2.666667    -9.888889

当应用多个函数时,将返回于原始DataFrame大小不同的DataFrame,返回结果中:

  • 在列索引上第一级别是原始列名
  • 在第二级别上是转换的函数名
>>> df.transform([lambda x:x-x.mean(),lambda x:x/10])
  score_math          score_music
          
0   8.666667      9.5   -4.888889      7.9
1   9.666667      9.6    6.111111      9.0
2  -1.333333      8.5    1.111111      8.5
3   6.666667      9.3    8.111111      9.2
4  -2.333333      8.4    6.111111      9.0
5   1.666667      8.8  -13.888889      7.0
6 -27.333333      5.9    5.111111      8.9
7   1.666667      8.8    2.111111      8.6
8   2.666667      8.9   -9.888889      7.4

applymap()

applymap()对pandas对象逐元素应用某个函数,成为元素级函数应用;

与map()的区别:

  • applymap()是DataFrame的实例方法
  • map()是Series的实例方法

例:对成绩保留小数后两位

>>> df.applymap(lambda x:'%.2f'%x)
  score_math score_music
0      95.00       79.00
1      96.00       90.00
2      85.00       85.00
3      93.00       92.00
4      84.00       90.00
5      88.00       70.00
6      59.00       89.00
7      88.00       86.00
8      89.00       74.00
 
>>> df['score_math'].map(lambda x:'%.2f'%x)
0    95.00
1    96.00
2    85.00
3    93.00
4    84.00
5    88.00
6    59.00
7    88.00
8    89.00
Name: score_math, dtype: object

从上述例子可以看出,applymap()操作实际上是对每列的Series对象进行了map()操作

通过以上分析我们可以看到,apply、agg、transform三种方法都可以对分组数据进行函数操作,但也各有特色,总结如下:

  • apply中自定义函数对每个分组数据单独进行处理,再将结果合并;整个DataFrame的函数输出可以是标量、Series或DataFrame;每个apply语句只能传入一个函数;
  • agg可以通过字典方式指定特征进行不同的函数操作,每一特征的函数输出必须为标量;
  • transform不可以通过字典方式指定特征进行不同的函数操作,但函数运算单位也是DataFrame的每一特征,每一特征的函数输出可以是标量或者Series,但标量会被广播。

groupby().apply()

import numpy as np
import pandas as pd


data = pd.DataFrame({'key1':list('aabba'),
                  'key2': ['one','two','one','two','one'],
                  'data1': np.random.randn(5),
                  'data2': np.random.randn(5)})

def f(group):
    group['sum'] = group.data1.sum()
    return group

aa = data.groupby(['key1','key2']).apply(f)

print(data)

print('*'*30)
print(aa)

bb = data.groupby(['key1','key2'])['data1'].apply(lambda x:x)
print('*'*30)
print(bb)

cc=data.groupby(['key1','key2']).indices
print('*'*30)
print(cc)

结果

  key1 key2     data1     data2
0    a  one -1.065003  0.775987
1    a  two -0.106187 -0.024468
2    b  one  1.079181 -0.499718
3    b  two -0.224642  0.213094
4    a  one  0.771805  1.877397
******************************
  key1 key2     data1     data2       sum
0    a  one -1.065003  0.775987 -0.293198
1    a  two -0.106187 -0.024468 -0.106187
2    b  one  1.079181 -0.499718  1.079181
3    b  two -0.224642  0.213094 -0.224642
4    a  one  0.771805  1.877397 -0.293198
******************************
0   -1.065003
1   -0.106187
2    1.079181
3   -0.224642
4    0.771805
Name: data1, dtype: float64
******************************
{('a', 'one'): array([0, 4], dtype=int64), 
('a', 'two'): array([1], dtype=int64),
('b', 'one'): array([2], dtype=int64), 
('b', 'two'): array([3], dtype=int64)}

参考:https://www.cnblogs.com/Cheryol/p/13451562.html
https://www.cnblogs.com/mliu222/p/12003794.html
https://blog.csdn.net/spiral1221/article/details/76152002

你可能感兴趣的:(数据分析)