研究生三年快毕业了,毕业前整理一下该领域的研究工作。正所谓,我栽树,后人乘凉。研究NILM的时候,个人觉得最快的方法是直接复现别人的论文,或者甚至用别人论文的代码直接跑出来体会整个流程(数据集导入->数据预处理->运行模型->输出结果)。研究生三年找遍了github上的一些相关的代码收集起来,现在快要毕业了,整理一下,就当做是研究生三年的一个交待。
个人研究NILM主要是利用深度学习、机器学习方面的方法,数学优化(遗传算法、粒子群优化)之类的研究得比较少,因此本文的分享主要聚集于已公开的基于深度学习来做非侵入式负荷识别的论文及相关公开的源码。
注:文中关于论文和代码的时效性为22年6月前后,后面我没有再阅读过相关论文和找过相关的公开代码了(主要是自己的论文后面投出去录用了),这方面的工作后面没有再深入了,好像就那时候开始流行用GNN来做了,因为之前普通的CNN、LSTM甚至Transformer都做过很多了,没得水论文了。此外,下面论文的代码我也只是跑通了个别几个感兴趣的,个别的你没跑通你问我我也不知道怎么弄。
最近更新时间:2023年1月10日 20:50:39 (排版好像不是很好看,有空再改改)
《Review on Deep Neural Networks Applied to Low-Frequency NILM》
如果你打算通过深度学习来研究NILM,这是一篇必读的综述。这篇综述的发表时间在2020年前后,包括了网上几乎全部的NILM公开数据集、论文及代码地址。我这篇整理,也是在这篇综述的基础上,增加一些额外收集到的NILM公开代码和论文。
对于必读和比较重要的,我会特意在下面给出文字提示,其它的也会按需要加上注解。
code:GitHub - OdysseasKr/neural-disaggregator: Code for NILM experiments using Neural Networks. Uses Keras/Tensorflow and the NILMTK.
GitHub - JackKelly/neuralnilm: Deep Neural Networks Applied to Energy Disaggregation
GitHub - maechler/nnilm: A reimplementation of Jack Kelly's rectangles neural network architecture based on Keras and the NILMToolkit.
推荐理由:深度学习用于NILM的开山之作,必读!
《Sequence-to-point learning with neural networks for nonintrusive load monitoring》
GitHub - MingjunZhong/NeuralNetNilm: Sequence-to-point learning for non-intrusive load monitoring (energy disaggregation)
GitHub - MingjunZhong/seq2point-nilm: Sequence-to-point learning for non-intrusive load monitoring
改进版本(进行剪枝)
Code: GitHub - JackBarber98/pruned-nilm: This repo provides four weight pruning algorithms for use in sequence-to-point energy disaggregation as well as three alternative neural network architectures.
paper: Lightweight Non-Intrusive Load Monitoring Employing Pruned Sequence-to-Point Learning | Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring
推荐理由:这里包括了seq2seq和seq2point两种方法,是很多论文的benchmark比较对象,必读!下面的改进版本可以暂时略过。
改进版本1:Structured Probabilistic Pruning
Wang, H., Zhang, Q., Wang, Y., Hu, H. (2018) Structured Probabilistic Pruning for Convolutional Neural Network Acceleration. Zhejiang University, China.
pdf: https://arxiv.org/pdf/1709.06994.pdf
改进版本2:Entropy-Based Pruning
Hur, C., Kang, S. (2018) Entropy-Based Pruning Method For Convolutional Neural Networks. The Journal of Supercomputing, 75:2950–2963.
pdf: https://link-springer-com/content/pdf/10.1007/s11227-018-2684-z.pdf
改进版本3:Relative Threshold Pruning
Asouri, A. H., Abdelrahman, T. S., Remedios, A. D. (2019) Retraining-Free Methods for Fast On-the-Fly Pruning of Convolutional Neural Networks. Neurocomputing, 370 56-59.
pdf: https://www.sciencedirect.com/science/article/abs/pii/S0925231219312019
code :https://github.com/OdysseasKr/online-nilm
pdf :https://dl.acm.org/doi/pdf/10.1145/3200947.3201011
注解:这个不是论文,应该是一个学生对其它论文的一个复现,基于pytorch框架,因为之前的工作很多时候都是用Tensorflow做的。但是这个仓库意外地包含了两篇中文核心的复现。
code: GitHub - Ming-er/NeuralNILM_Pytorch
下面是来自他github的截图
[5]基于 seq2seq 和 Attention 机制的居民用户非侵入式负荷分解
[8]基于卷积块注意力模型的非侵入式负荷分解算法
code: Bitbucket
注解:GAN
GitHub - picagrad/WaveNILM: WaveNILM as published at ICASSP 2019
注解:通过wavenet,把电力信号当成语音信号来处理?膨胀卷积,扩大感受野。
code: a3labShares / A3NeuralNILM · GitLab
pdf: A Tree-Structured Neural Network Model for Household Energy Breakdown | The World Wide Web Conference
code: GitHub - yilingjia/TreeCNN-for-Energy-Breakdown: WWW19' A Tree-Structured Neural Network Model for Household Energy Breakdown
pdf : Deep Learning-Based Energy Disaggregation and On/Off Detection of Household Appliances | ACM Transactions on Knowledge Discovery from Data
code : GitHub - jiejiang-jojo/fast-seq2point
pdf : EdgeNILM | Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
code : https://github.com/EdgeNILM/EdgeNILM
Code: GitHub - JackBarber98/pruned-nilm: This repo provides four weight pruning algorithms for use in sequence-to-point energy disaggregation as well as three alternative neural network architectures.
paper: Lightweight Non-Intrusive Load Monitoring Employing Pruned Sequence-to-Point Learning | Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring
注解:剪枝;
pdf: UNet-NILM | Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring
code : https://github.com/sambaiga/UNETNiLM
注解:Unet;多任务Multi-task;
pdf: https://mobile.aau.at/publications/bousbiat-buildsys20-imaging.pdf
code: https://github.com/BHafsa/image-nilm
注解:把NILM当成图像分类来做,挺有意思的,有好几篇也是这个思路,下面展开一下说明,代码在后面补充。
将一维序列数据转化为二维图像数据,把负荷识别当成进行图片分类来做,同时还有分灰度编码和彩色编码的图。
常见一维数据转二维的方法:
example1: 《非侵入式负荷识别边缘计算颜色编码研究》(2020)
example2 : 《Imaging Time-Series for NILM》(2019)
2.马尔科夫变迁场MTF
example1:《Exploring Time Series Imaging for Load Disaggregation》(2020)
3.递归图Recurrence Plot
example1:Improved Appliance Classification in Non-Intrusive Load Monitoring Using Weighted Recurrence Graph and Convolutional Neural Networks(2020)
4.短时傅里叶变换STFT
(这个应该有的,但是没记录)
5.V-I轨迹
example1:《A feasibility study of automated plug-load identification from high-frequency measurements》(2015) 二值化V-I轨迹
example2:《Appliance classification using VI trajectories and convolutional neural networks》(2017) 灰度的V-I轨迹
example3:《Non-Intrusive Load Monitoring by Voltage–Current Trajectory Enabled Transfer Learning》(2019) 彩色的V-I轨迹
code: GitHub - lmssdd/TPNILM: Notebook for Temporal Pooling NILM
pdf: Applied Sciences | Free Full-Text | Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multilabel Classificationz
注解:用到了语义分割里面比较出名的PSPNet来做多标签分类,可以读一下,代码也容易懂。
pdf: Sequence-To-Subsequence Learning With Conditional Gan For Power Disaggregation | IEEE Conference Publication | IEEE Xplore
code: GitHub - DLZRMR/seq2subseq: Seq2subseq method for NILM
注解:GAN,生成对抗网络;
code: GitHub - LampriniKyrk/Imaging-NILM-time-series
pdf: https://arxiv.org/abs/1812.03915
code: GitHub - cbrewitt/nilm_fcn: Fully convolutional neural networks for non-intrusive load monitoring
pdf: https://www.mdpi.com/1996-1073/14/4/847/pdf
code: GitHub - antoniosudoso/attention-nilm: An Attention-based Deep Neural Network for Non-Intrusive Load Monitoring
pdf: https://www.sciencedirect.com/science/article/pii/S0142061521000776
code: https://github.com/linfengYang/BitcnNILM
注解:wavenet+空洞卷积,瞎搞的堆叠罢了。
pdf: Generative Adversarial Networks and Transfer Learning for Non-Intrusive Load Monitoring in Smart Grids | IEEE Conference Publication | IEEE Xplore
code :GitHub - Awadelrahman/GAN-NILM: GAN-NILM: Using Generative Adversarial Networks to perform Non-Intrusive Load Monitoring (aka load disaggregation)
注解:GAN+Transfer Learning(迁移学习),后面迁移学习相关的我再补充一篇
pdf: Energies | Free Full-Text | Improved Appliance Classification in Non-Intrusive Load Monitoring Using Weighted Recurrence Graph and Convolutional Neural Networks
code: GitHub - sambaiga/WRG-NILM: Weighted Recurrence Graph for appliance classification
pdf: https://arxiv.org/pdf/2106.02352.pdf
code: GitHub - arx7ti/cold-nilm: The code to reproduce all the numerical results and the plots of the paper.
pdf: https://arxiv.org/pdf/2103.12177.pdf
code :GitHub - ETSSmartRes/VAE-NILM: Non-Intrusive Load Monitoring based on VAE model
注解:建议跑一下这个代码,挺仔细的,这几个作者做的实验,虽然其实就是一个VAE(变分自编码器),创新性一般的样子。
pdf: Sustainability | Free Full-Text | Nonintrusive Residential Electricity Load Decomposition Based on Transfer Learning
code : https://github.com/eyangs/transferNILM
注解:又是迁移学习。
code : GitHub - sambaiga/AWRGNILM: Adaptive Recurrence Graph for Appliance classification in NILM.
pdf:https://ieeexplore.ieee.org/abstract/document/9144492
PDF:https://www.mdpi.com/1996-1073/13/16/4154/htm
code: https://github.com/sambaiga/MLCFCD
code: GitHub - LucasNolasco/DeepDFML-NILM: A new CNN architecture to perform detection, feature extraction, and multi-label classification of loads, in non-intrusive load monitoring (NILM) approaches, with a single model for high-frequency signals.
pdf: DeepDFML-NILM: A New CNN-Based Architecture for Detection, Feature Extraction and Multi-Label Classification in NILM Signals | IEEE Journals & Magazine | IEEE Xplore
文献下载: http://nilmworkshop.org/2020/proceedings/nilm20-final88.pdf
Code: https://github.com/Yueeeeeeee/BERT4NILM
pdf: Sci-Hub | Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid | 10.3390/en14154649
code :https://github.com/vahit19/smart_grid
pdf : https://www.mdpi.com/1424-8220/22/2/473
code : https://github.com/ChristoferNal/Neural-Fourier-Energy-Disaggregation
https://github.com/MingjunZhong/transferNILM
基于TensorFlow2.0版本的实现
GitHub - MingjunZhong/seq2point-nilm: Sequence-to-point learning for non-intrusive load monitoring
GitHub - LeoVogiatzis/GNN_based_NILM: Non Intrusive Load Monitoring based on Graph Neural Networks and Representation Learning
注解:22年6月的时候发现的,截止我发文的时候(2023年1月),也不知道这个作者发paper了没
GitHub - smakonin/SparseNILM: The super-state hidden Markov model disaggregator that uses a sparse Viterbi algorithm for decoding. This project contains the source code that was use for my IEEE Transactions on Smart Grid journal paper.
An Extensible Approach for Non-Intrusive Load Disaggregation With Smart Meter Data | IEEE Journals & Magazine | IEEE Xplore
GitHub - WilsonKong/siqpnilm
GitHub - MingjunZhong/LatentBayesianMelding: Latent Bayesian melding for non-intrusive load monitoring (energy disaggregation)
Code: GitHub - loneharoon/GSP_energy_disaggregator: This contains the energy disaggregation code based on Graph Signal Processing approach
pdf: https://ieeexplore.ieee.org/document/7457610
pdf: On time series representations for multi-label NILM
code: GitHub - ChristoferNal/multi-nilm: Multi-NILM: Multi Label Non Intrusive Load Monitoring
pdf :A Machine Learning Approach for NILM based on Odd Harmonic Current Vectors | IEEE Conference Publication | IEEE Xplore
code :GitHub - kbodurri/NILM: Code for our MPS 2019 paper entitled "A Machine Learning Approach for NILM based on Odd Harmonic Current Vectors"
code: GitHub - antoniosudoso/nilm-bqp: Mixed-Integer Nonlinear Programming for NILM
pdf: https://arxiv.org/abs/2106.09158
pdf : https://arxiv.org/abs/1907.06299
code :GitHub - compsust/KP-NILM: Supervised NILM using multiple-choice knapsack problem (MCKP).
https://github.com/ch-shin/awesome-nilm
CS446 Project: Electric Load Identification using Machine Learning
code: GitHub - andydesh/nilm: Non intrusive load monitoring using machine learning
ZhangRaymond/Neural-NILM
vyokky/AAAI-NILM
非侵入式负载监测(NILM)旨在预测家庭中家用电器的状态或消耗,只需知道汇总的电力负荷。NILM可以被表述为回归问题或最常见的分类问题。由智能电表收集的大多数数据集允许自然地定义回归问题,但相应的分类问题是一个派生问题,因为它需要通过阈值处理方法从电力信号转换为每个设备的状态。我们处理了三种不同的阈值处理方法来执行这一任务,讨论了它们在UK-DALE数据集的各种设备上的差异。我们分析了深度学习最先进的架构在回归和分类问题上的表现,介绍了选择最方便的阈值处理方法的标准。
code:https://github.com/UCA-Datalab/nilm-thresholding
Neural NILM: Deep Neural Networks Applied to Energy Disaggregation
code: https://github.com/louisyuzhe/MachineLearning_NILM
注解:好像是国外某个大学生的本科毕业设计