- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- DeepSeek与核货宝订货系统的协同进化:智能商业范式重构
多用户商城系统
订货系统源码deepseek人工智能核货宝订货系统
数据处理与分析方面深度数据洞察:利用Deepseek强大的智能数据挖掘与分析能力,处理核货宝订货系统中的海量订单数据、客户数据、商品数据等。比如分析不同地区、不同时间、不同客户群体的订货偏好和趋势,为批发订货企业制定精准的采购、库存和销售策略提供依据。建立行业知识图谱:Deepseek可基于核货宝系统的数据及行业信息,构建批发行业知识图谱,清晰呈现企业、产品、客户、供应商等之间的关系和关联信息,帮
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- 基于neo4j知识图谱+flask的大数据医疗领域知识问答系统(完整源码+源码解析+开发文档+视频讲解等资料
2401_84185074
neo4j知识图谱flask
1.classMedicalSpider::定义了一个名为MedicalSpider的类。2.def**init**(self)::这是类的构造函数,用于在创建类的实例时进行初始化。在初始化过程中,建立了与MongoDB数据库的连接,并选择了名为‘medical’的数据库和名为‘data’的集合。3.definsert\_data(self,data)::这是一个方法,用于插入数据到MongoDB
- 职场人AI突围战:解密DeepSeek的36种反内耗姿势
小momomo
人工智能
当你的周报被AI碾压,当同事用智能看板抢走升职机会,当00后实习生靠提示词工程赢得领导青睐——这个悄然降临的AI职场时代,正在重构我们的生存法则。**▍DeepSeek职场变形记**这不是你认知中的聊天机器人,而是一个会进化的数字同事:-**会议终结者**:自动生成带执行方案的会议纪要,智能识别7种无效讨论模型-**文档捕手**:跨平台抓取微信/钉钉/邮件文件,建立带知识图谱的智能档案馆-**数据
- 优化GPT API接口链接的方法
IPdodo全球网络服务
gpt
随着人工智能技术的飞速发展,GPT模型在自然语言处理领域中的应用越来越广泛。无论是在智能客服、自动化写作,还是在知识图谱的构建中,GPTAPI接口的高效调用和响应能力都成为了应用成功与否的关键。一、了解GPTAPI接口的基本工作原理在深入讨论优化策略之前,首先需要了解GPTAPI接口的基本工作原理。GPTAPI通过HTTP协议与用户系统进行通信,通常使用RESTfulAPI设计,客户端发送请求(如
- AI知识库和全文检索的区别
xixingzhe2
AI人工智能
1、AI知识库的作用AI知识库是基于人工智能技术构建的智能系统,能够理解、推理和生成信息。它的核心作用包括:1.1语义理解自然语言处理(NLP):AI知识库能够理解用户查询的语义,而不仅仅是关键词匹配。上下文关联:能够结合上下文信息,提供更准确的答案。1.2知识推理逻辑推理:通过知识图谱或预训练模型,AI知识库可以进行逻辑推理,回答复杂问题。多跳推理:能够从多个数据源中提取信息,综合生成答案。1.
- 【华为OD机试真题】177、发现新词的数量 / 知识图谱新词挖掘 | 机试真题+思路参考+代码解析(C++、Java、Py)
KJ.JK
OJ+最新华为OD机试(C++JavaPy)华为od知识图谱c++python发现新词的数量知识图谱新词挖掘
文章目录一、题目题目描述输入输出样例1样例2二、代码与思路参考C++语言思路C++代码Java语言思路Java代码Python语言思路Python代码作者:KJ.JK订阅本专栏后即可解锁在线OJ刷题权限个人博客首页:KJ.JK专栏介绍:2024年最新的华为OD机试真题B、C和D卷,使用C++、Java、Python语言进行解答,每个题目的思路分析都非常详细,支持在线OJ评测刷题!!!!订阅后获取权
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- DeLLMa框架:优化复杂决策的新路径
XianxinMao
人工智能
标题:DeLLMa框架:优化复杂决策的新路径文章信息摘要:DeLLMa框架通过整合大型语言模型(LLMs)和结构化数据,优化了在不确定性条件下的决策过程,特别是在处理复杂决策问题时,能够增强决策的严谨性和精确性。该框架利用LLMs处理非结构化文本数据的能力,结合结构化数据的定量分析,弥补了传统决策方法中的认知偏差和信息处理不足。通过引入知识图谱和定量分析技术,DeLLMa不仅提高了决策的透明度和可
- 知识图谱智能应用系统:数据分析与挖掘技术文档
光芒再现0394
知识图谱数据分析人工智能
一、概述在知识图谱智能应用系统中,数据分析与挖掘模块是实现知识发现和智能应用的核心环节。该模块负责处理和分析来自数据采集与预处理模块的结构化和半结构化数据,提取有价值的知识,并将其转化为可用于知识图谱构建和应用的三元组数据。本技术文档详细介绍了数据分析与挖掘模块中使用到的关键技术,包括SparkML、StanfordNLP、JNA、Jena、Python调用以及定时调度。二、技术栈介绍(一)Spa
- DeepSeek:知识图谱与大模型参数化知识融合的创新架构
deepseek
引言:AI领域的融合趋势在目前大模型与知识图谱作为两个重要的研究方向,各自展现出了强大的能力与潜力。大模型,凭借其在海量数据上的深度训练,拥有强大的语言理解与生成能力,能够处理多种自然语言处理任务,如文本生成、问答系统、机器翻译等,像GPT系列模型,一经推出便在全球范围内引起了广泛关注,展示了大模型在语言处理方面的卓越能力。知识图谱则以结构化的方式组织知识,清晰地展现了实体之间的关系,为智能应用提
- 【轻量级推荐算法框架】ReChorus 是一个高效、可扩展的轻量级推荐算法框架
繁华落尽,寻一世真情
推荐算法算法机器学习
ReChorus是一个高效、可扩展的轻量级推荐算法框架,基于PyTorch实现。该框架旨在解决推荐系统中算法实现细节、评价方式、数据集处理等方面的差异,帮助缓解可复现性问题。ReChorus实现了多种不同类型的推荐算法,包括常规推荐、序列推荐、引入知识图谱的推荐和引入时间动态性的推荐等,同时提供统一的预处理范式。主要特点和功能综合高效:ReChorus框架目前实现了13个不同的推荐算法,
- LangGraph入门教程
xnuscd
python
LangGraph教程:在LangChain中集成知识图谱目录简介前置条件环境配置安装必要的库创建知识图谱集成LangChain与知识图谱定义工具构建Agent类自定义模板和输出解析运行示例扩展与优化常见问题与故障排除总结简介LangGraph是一个结合LangChain与知识图谱(KnowledgeGraph)的应用,旨在通过结构化的知识库增强语言模型的理解和响应能力。通过将知识图谱与LangC
- 运维之专业术语(Professional Terminology for Pperation and Maintenance)
Linux运维老纪
勇敢向前迎接运维开发之挑战运维开发云计算服务器大数据数据库网络网络安全
运维之专业术语运维领域作为IT基础设施的中枢神经系统,其专业术语体系构成了一套完整的知识图谱。本文系统梳理了涵盖基础运维、云计算架构、自动化工程等领域的200个核心术语,为从业者构建完整的知识框架。一、基础设施层(30个)1.LVS(LinuxVirtualServer):基于Linux内核的四层负载均衡解决方案2.Bonding(链路聚合):物理网卡冗余与带宽叠加技术3.RHEL(RedHatE
- 课程知识图谱生成系统设计与实现
编程千纸鹤
Java项目实战专栏人工智能大数据知识图谱人工智能课程知识图谱
作者主页:编程千纸鹤作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智
- 【kafka】kafka的动态配置管理使用和分析
石臻臻的杂货铺
Kafkakafka运维
该文章可能已过期,已不做勘误并更新,请访问原文地址(持续更新)Kafka中的动态配置源码分析kafka知识图谱:Kafka知识图谱大全kafka管控平台推荐使用滴滴开源的Kafka运维管控平台(戳我呀)更符合国人的操作习惯、更强大的管控能力、更高效的问题定位能力、更便捷的集群运维能力、更专业的资源治理、更友好的运维生态、BliBli视频:石臻臻的杂货铺kafka的动态配置文章目录源码分析1.Bro
- Unifying Large Language Models and Knowledge Graphs: A Roadmap综述笔记-入门-知识图谱KG-大模型LLM
笨cc
KG读论文语言模型知识图谱笔记
论文信息标题:UnifyingLargeLanguageModelsandKnowledgeGraphs:ARoadmap作者:ShiruiPan摘要LLMs,例如chatGPT和GPT4,由于其涌现能力和泛化性,对自然语言理解和人工智能领域产生了新的冲击。然而,LLMs是一个黑箱模型,往往缺乏捕获和获得事实知识。相反,知识图谱,例如维基百科等,是有结构模型。存储着丰富的事实知识。KGs可以通过提
- 【知识图谱增强】大模型应用架构:融合智能与数据的新纪元!
大模型入门教程
知识图谱架构人工智能语言模型大模型llamaAI大模型
1.引言最近OpenAI连续12天进行12场直播,发布新品。其中第八天介绍了ChatGPT搜索功能项全体用户开放。搜索增强大模型值得OpenAI安排一天专门介绍,和o1、ChatGPTVision等功能同等待遇,说明其意义重大。ChatGPT的外部搜索能力,使其不仅限于预训练的数据,而是可以实时访问和检索互联网的最新信息。这就是典型的知识增强大模型应用,通过外部知识的增强能够扩展大模型的能力,让其
- 知识图谱检索增强的GraphRAG(基于Neo4j代码实现)
大模型扬叔
知识图谱neo4j人工智能GraphRAG
前言图检索增强生成(GraphRAG)正逐渐流行起来,成为传统向量搜索方法的有力补充。这种方法利用图数据库的结构化特性,将数据以节点和关系的形式组织起来,从而增强检索信息的深度和上下文关联性。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性。而向量数据库在处理这类结构化信息时则显得力不从心,它们更擅长通过高维向量处理非结构化数据。在RAG应用中,结合
- NLP模型笔记2022-24:neo4j+py2neo 构建《中国优质电影及其演员》知识图谱
源代码杀手
自然语言处理笔记与知识图谱专栏知识图谱自然语言处理人工智能
往前文章链接NLP模型笔记2022-25:neo4j+py2neo构建增值税电子普通发票知识图谱NLP模型笔记2022-24:neo4j+py2neo构建《中国优质电影及其演员》知识图谱NLP模型笔记2022-23:知识图谱neo4j可视化实体多关系属性【破案线索关系】NLP模型笔记2022-22:知识图谱neo4j批量可视化NLP模型笔记2022-21:知识图谱neo4j指定方向实体(头实体、尾
- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- LLM的实时性:迈向毫秒级响应的AI
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
LargeLanguageModel(LLM),实时性,响应时间,微服务架构,并行处理,知识图谱,优化算法,延迟最小化1.背景介绍大型语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,展现出强大的文本生成、翻译、摘要和问答能力。然而,现有的LLM模型通常面临着响应时间较慢的问题,这限制了其在实时应用场景中的应用。例如,在聊天机器人、实时翻译和智能客服等领域,用户期望能够获得即时响应,而传统
- 玩转大语言模型——使用GraphRAG+Ollama本地构建知识图谱(完全本地化,不依赖OpenAI)
艾醒(AiXing-w)
玩转大语言模型语言模型知识图谱人工智能
系列文章目录玩转大语言模型——使用langchain和Ollama本地部署大语言模型玩转大语言模型——ollama导入huggingface下载的模型玩转大语言模型——langchain调用ollama视觉多模态语言模型玩转大语言模型——使用GraphRAG+Ollama构建知识图谱玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题玩转大语言模型——配置图数据库Neo4j(含a
- 知识图谱与大语言模型:构建智能问答系统
AGI大模型与大数据研究院
大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍在当今的信息时代,数据的获取和处理已经成为了我们生活中不可或缺的一部分。然而,随着数据量的爆炸性增长,如何从海量的数据中提取有用的信息,进而为用户提供精准的服务,已经成为了一个重要的研究课题。在这个背景下,知识图谱和大语言模型应运而生,它们通过对数据的深度挖掘和智能处理,为构建智能问答系统提供了可能。2.核心概念与联系2.1知识图谱知识图谱是一种新型的数据结构,它以图的形式表示实体之间
- 知识图谱技术剖析
♢.*
人工智能知识图谱大数据
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!一、引言在当今数字化信息爆炸的时代,如
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 知识图谱自动构建工具有哪些
Nate Hillick
知识图谱neo4j人工智能
知识图谱的自动构建工具有很多,常见的包括:Neo4j:基于图数据库的知识图谱构建工具Protégé:开源的知识图谱开发平台GoogleKnowledgeGraph:Google搜索引擎的知识图谱构建工具TopBraidComposer:基于SemanticWeb技术的知识图谱构建工具AllegroGraph:高性能图数据库,可用于构建知识图谱这仅仅是其中一部分工具,在市场上还有更多类似的工具。
- 用 Neo4j GraphRAG 工具开启你的智能应用之旅
步子哥
AGI通用人工智能neo4j人工智能
在这个人工智能飞速发展的时代,Neo4j带来了一项令人激动的创新——GraphRAG生态系统工具。这组开源工具为开发人员提供了一个全新的途径,以构建基于知识图谱的智能应用,让机器更好地理解和回应我们的查询。接下来,让我们一起探索这些工具如何帮助我们构建更智能、更准确的应用。什么是GraphRAG?GraphRAG是一种结合了检索增强生成(RAG)技术和知识图谱的解决方案。它不仅解决了大型语言模型常
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen