VOC数据集格式转化成COCO数据集格式
一、唠叨
之前写过一篇关于coco数据集转化成VOC格式的博客COCO2VOC,最近读到CenterNet的官方代码,实现上则是将voc转化成coco数据格式,这样的操作我个人感觉很不习惯,也觉得有些奇葩,可能是每个人习惯不一样吧,我们知道有时候我们会采用labelImg标注数据,标注出来的格式就是voc,如果直接训练就可以用来训练是不是更加友好。
为了不大规模修改原始训练代码(虽然自己修改了一个版本的voc数据集就能直接训练centernet ),同时也看到网上很多大佬也做了将VOC数据格式转化成COCO用于其训练,这里我自己做一个精细一点的,作为笔记。
二、转化过程
数据格式的转换实际是annotation标注文件的转化,voc的数据标注文件为以.xml结尾的文件,而且每张图片均有一个对应的同名标注文件;COCO则是将所有的标注信息写在一个json文件中。VOC数据集目录如下:
在之前的coco2voc博客中做了详细的介绍,现在直接开始转化,目标就是将Annotations中的所有标注文件中的bbox标注信息转化为json文件,根据训练集和测试集,则主要转化为四个json文件,分别是test.json、train.json、val.json和trainval.json .这里我根据ImageSets中的train.txt val.txt trainval.txt生成后三个json文件,当然也可以直接从Annotations文件夹生成。
VOC2COCO.py
import xml.etree.ElementTree as ET
import os
import json
coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []
category_set = dict()
image_set = set()
category_item_id = -1
image_id = 20180000000
annotation_id = 0
def addCatItem(name):
global category_item_id
category_item = dict()
category_item['supercategory'] = 'none'
category_item_id += 1
category_item['id'] = category_item_id
category_item['name'] = name
coco['categories'].append(category_item)
category_set[name] = category_item_id
return category_item_id
def addImgItem(file_name, size):
global image_id
if file_name is None:
raise Exception('Could not find filename tag in xml file.')
if size['width'] is None:
raise Exception('Could not find width tag in xml file.')
if size['height'] is None:
raise Exception('Could not find height tag in xml file.')
image_id += 1
image_item = dict()
image_item['id'] = image_id
image_item['file_name'] = file_name
image_item['width'] = size['width']
image_item['height'] = size['height']
coco['images'].append(image_item)
image_set.add(file_name)
return image_id
def addAnnoItem(object_name, image_id, category_id, bbox):
global annotation_id
annotation_item = dict()
annotation_item['segmentation'] = []
seg = []
# bbox[] is x,y,w,h
# left_top
seg.append(bbox[0])
seg.append(bbox[1])
# left_bottom
seg.append(bbox[0])
seg.append(bbox[1] + bbox[3])
# right_bottom
seg.append(bbox[0] + bbox[2])
seg.append(bbox[1] + bbox[3])
# right_top
seg.append(bbox[0] + bbox[2])
seg.append(bbox[1])
annotation_item['segmentation'].append(seg)
annotation_item['area'] = bbox[2] * bbox[3]
annotation_item['iscrowd'] = 0
annotation_item['ignore'] = 0
annotation_item['image_id'] = image_id
annotation_item['bbox'] = bbox
annotation_item['category_id'] = category_id
annotation_id += 1
annotation_item['id'] = annotation_id
coco['annotations'].append(annotation_item)
def _read_image_ids(image_sets_file):
ids = []
with open(image_sets_file) as f:
for line in f:
ids.append(line.rstrip())
return ids
"""通过txt文件生成"""
#split ='train' 'va' 'trainval' 'test'
def parseXmlFiles_by_txt(data_dir,json_save_path,split='train'):
print("hello")
labelfile=split+".txt"
image_sets_file = data_dir + "/ImageSets/Main/"+labelfile
ids=_read_image_ids(image_sets_file)
for _id in ids:
xml_file=data_dir + f"/Annotations/{_id}.xml"
bndbox = dict()
size = dict()
current_image_id = None
current_category_id = None
file_name = None
size['width'] = None
size['height'] = None
size['depth'] = None
tree = ET.parse(xml_file)
root = tree.getroot()
if root.tag != 'annotation':
raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))
# elem is , , ,
生成之后就是这样:
到此就结束了,提供两个关键函数,一个是通过txt,另一个使用过文件夹,然后就可以用于centernet训练了,或者也可以用于其他的算法数据准备。
任何程序错误,以及技术疑问或需要解答的,请添加