matlab图像处理初步,一MATLAB数字图像处理初步.doc

一MATLAB数字图像处理初步

专业课程实验指导书

(数字图像处理、遥感技术与应用)

(探测与识别技术、计算机控制技术)

探测与信息工程系

景文博 冷雪 郑文波 韩文波 杨进华

数字图像处理

实验指导书

主 编:景文博 杨进华

目 录

实验一 MATLAB数字图像处理初步3

实验二 图像的代数运算9

实验三 图像增强—灰度变换17

实验四 图像增强—直方图变换19

实验五 图像增强—空域滤波22

实验六 图像的傅立叶变换25

实验七 图像增强—频域滤波28

实验八 彩色图像处理31

实验九 图像分割35

实验十 形态学运算38

附 录 MATLAB简介41

实验一 MATLAB数字图像处理初步

一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点

1、数字图像的表示和类别

一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化

根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:

亮度图像(Intensity images)

二值图像(Binary images)

索引图像(Indexed images)

RGB图像(RGB images)

(1) 亮度图像

一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[065536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[01]

(2) 二值图像

一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。使用logical函数可以把数值数组转化为二值数组或逻辑数组。创建一个逻辑图像,其语法为:

B=logical(A)

其中,B是由0和1构成的数值数组。

要测试一个数组是否为逻辑数组,可以使用函数:

islogical(c)

若C是逻辑数组,则该函数返回1;否则,返回0。

(3) 索引图像

索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。

一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。

(4) RGB图像

一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。

令fRfG和fB分别代表三种RGB分量图像。一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像:

rgb_image=cat(3,fR,fG,fB)

在操作中,图像按顺序放置。

2、数据类和图像类型间的转化

表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。

工具箱中提供了执行必要缩放的函数(见表2)。以在图像类和类型间进行转化。

表1MATLAB和IPT

名称描述double双精度浮点数,范围为uint8无符号8比特整数,范围为[0 255]uint16无符号16比特整数,范围为[0 65536]uint32无符号32比特整数,范围为[0 4294967295]int8有符号8比特整数,范围为[-128 127]int

你可能感兴趣的:(matlab图像处理初步)