贝叶斯优化是当今黑盒函数估计领域最为先进和经典的方法,在同一套序贯模型下使用不同的代理模型以及采集函数、还可以发展出更多更先进的贝叶斯优化改进版算法,因此,贝叶斯优化的其算法本身就多如繁星,实现各种不同种类的贝叶斯优化的库也是琳琅满目,几乎任意一个专业用于超参数优化的工具库都会包含贝叶斯优化的内容。我们可以在以下页面找到大量可以实现贝叶斯优化方法的HPO库:https://www.automl.org/automl/hpo-packages/ ,其中大部分库都是由独立团队开发和维护,因此不同的库之间之间的优劣、性格、功能都有很大的差异。下面将介绍三个可以实现贝叶斯优化的库:bayesian-optimization
,hyperopt
,optuna
。
HPO库 | 优劣评价 | 推荐指数 |
---|---|---|
bayes_opt | ✅实现基于高斯过程的贝叶斯优化 ✅当参数空间由大量连续型参数构成时 ⛔包含大量离散型参数时避免使用 ⛔算力/时间稀缺时避免使用 |
⭐⭐ |
hyperopt | ✅实现基于TPE的贝叶斯优化 ✅支持各类提效工具 ✅进度条清晰,展示美观,较少怪异警告或报错 ✅可推广/拓展至深度学习领域 ⛔不支持基于高斯过程的贝叶斯优化 ⛔代码限制多、较为复杂,灵活性较差 |
⭐⭐⭐⭐ |
optuna | ✅(可能需结合其他库)实现基于各类算法的贝叶斯优化 ✅代码最简洁,同时具备一定的灵活性 ✅可推广/拓展至深度学习领域 ⛔非关键性功能维护不佳,有怪异警告与报错 |
⭐⭐⭐⭐ |
pip install bayesian-optimization
conda install -c conda-forge bayesian-optimization
pip install hyperopt
pip install optuna
conda install -c conda-forge optuna
此外还需要安装一个辅助包:Skopt
pip install scikit-optimize
bayes-optimization是最早开源的贝叶斯优化库之一,也是为数不多至今依然保留着高斯过程优化的优化库。由于开源较早、代码简单,bayes-opt常常出现在论文、竞赛kernels或网络学习材料当中,因此理解Bayes_opt的代码是极其重要的课题。不过,bayes-opt对参数空间的处理方式较为原始,也缺乏相应的提效/监控功能,对算力的要求较高,因此它往往不是我们进行优化时的第一首选库。通常来说,当且仅当我们必须要实现基于高斯过程的贝叶斯优化,且算法的参数空间中带有大量连续型参数时,我们才会优先考虑Bayes_opt库。我们可以在github上找到bayes-optmization的官方文档(https://github.com/fmfn/BayesianOptimization) ,想要进一步了解其基本功能与原理的小伙伴可以进行阅读。
from bayes_opt import BayesianOptimization
1 目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素,因此在定义目标函数时,我们需要让超参数作为目标函数的输入。
2 超参数的输入值只能是浮点数,不支持整数与字符串。因此当算法的实际参数需要输入字符串时,该参数不能使用bayes_opt进行调整,当算法的实际参数需要输入整数时,则需要在目标函数中规定参数的类型。
3 bayes_opt只支持寻找 f ( x ) f(x) f(x)的最大值,不支持寻找最小值。因此当我们定义的目标函数是某种损失时,目标函数的输出需要取负(即,如果使用RMSE,则应该让目标函数输出负RMSE,这样最大化负RMSE后,才是最小化真正的RMSE。)当我们定义的目标函数是准确率,或者auc等指标,则可以让目标函数的输出保持原样。
def bayesopt_objective(n_estimators,max_depth,max_features,min_impurity_decrease):
#定义评估器
#需要调整的超参数等于目标函数的输入,不需要调整的超参数则直接等于固定值
#默认参数输入一定是浮点数,因此需要套上int函数处理成整数
reg = RFR(n_estimators = int(n_estimators)
,max_depth = int(max_depth)
,max_features = int(max_features)
,min_impurity_decrease = min_impurity_decrease
,random_state=1412
,verbose=False #可自行决定是否开启森林建树的verbose
,n_jobs=-1)
#定义损失的输出,5折交叉验证下的结果,输出负根均方误差(-RMSE)
#注意,交叉验证需要使用数据,但我们不能让数据X,y成为目标函数的输入
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
validation_loss = cross_validate(reg,X,y
,scoring="neg_root_mean_squared_error"
,cv=cv
,verbose=False
,n_jobs=-1
,error_score='raise'
#如果交叉验证中的算法执行报错,则告诉我们错误的理由
)
#交叉验证输出的评估指标是负根均方误差,因此本来就是负的损失
#目标函数可直接输出该损失的均值
return np.mean(validation_loss["test_score"])
在bayes_opt中,我们使用字典方式来定义参数空间,其中参数的名称为键,参数的取值范围为值。且任意参数的取值范围为双向闭区间,以下方的空间为例,在n_estimators的取值中,80与100都可以被取到。
param_grid_simple = {'n_estimators': (80,100)
, 'max_depth':(10,25)
, "max_features": (10,20)
, "min_impurity_decrease":(0,1)
}
需要注意的是,bayes_opt只支持填写参数空间的上界与下界,不支持填写步长等参数,且bayes_opt会将所有参数都当作连续型超参进行处理,因此bayes_opt会直接取出闭区间中任意浮点数作为备选参数。例如,取92.28作为n_estimators的值。
在有了目标函数与参数空间之后,我们就可以按bayes_opt的规则进行优化了。在任意贝叶斯优化算法的实践过程中,一定都有涉及到随机性的过程——例如,随机抽取点作为观测点,随机抽样部分观测点进行采集函数的计算等等。在大部分优化库当中,这种随机性是无法控制的,即便允许我们填写随机数种子,优化算法也不能固定下来。因此我们可以尝试填写随机数种子,但需要记住优化算法每次运行时一定都会不一样。
def param_bayes_opt(init_points,n_iter):
#定义优化器,先实例化优化器
opt = BayesianOptimization(bayesopt_objective #需要优化的目标函数
,param_grid_simple #备选参数空间
,random_state=1412 #随机数种子,虽然无法控制住
)
#使用优化器,记住bayes_opt只支持最大化
opt.maximize(init_points = init_points #抽取多少个初始观测值
, n_iter=n_iter #一共观测/迭代多少次
)
#优化完成,取出最佳参数与最佳分数
params_best = opt.max["params"]
score_best = opt.max["target"]
#打印最佳参数与最佳分数
print("\n","\n","best params: ", params_best,
"\n","\n","best cvscore: ", score_best)
#返回最佳参数与最佳分数
return params_best, score_best
def bayes_opt_validation(params_best):
reg = RFR(n_estimators = int(params_best["n_estimators"])
,max_depth = int(params_best["max_depth"])
,max_features = int(params_best["max_features"])
,min_impurity_decrease = params_best["min_impurity_decrease"]
,random_state=1412
,verbose=False
,n_jobs=-1)
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
validation_loss = cross_validate(reg,X,y
,scoring="neg_root_mean_squared_error"
,cv=cv
,verbose=False
,n_jobs=-1
)
return np.mean(validation_loss["test_score"])
start = time.time()
params_best, score_best = param_bayes_opt(20,280) #初始看20个观测值,后面迭代280次
print('It takes %s minutes' % ((time.time() - start)/60))
validation_score = bayes_opt_validation(params_best)
print("\n","\n","validation_score: ",validation_score)
不难发现,bayes_opt的速度虽然快,效率却不高。实际上在迭代到170次时,贝叶斯优化就已经找到了最小损失,但由于没有提前停止机制,模型还持续地迭代了130次才停下,如果bayes_opt支持提前停止机制,贝叶斯优化所需的实际迭代时间可能会更少。同时,由于Bayes_opt只能够在参数空间提取浮点数,bayes_opt在随机森林上的搜索效率是较低的,即便在10次不同的迭代中分别取到了[88.89, 88.23, 88.16, 88.59……]等值,在取整之后也只能够获得一个备选值88,但bayes_opt无法辨别这种区别,因此可能取出了众多无效的观测点。如果使用其他贝叶斯优化器,贝叶斯优化的效率将会更高。
虽然在我们的代码中没有体现,但bayes_opt是支持灵活修改采集函数与高斯过程中的种种参数的,具体可以参考这里:https://github.com/fmfn/BayesianOptimization/blob/master/examples/advanced-tour.ipynb
Hyperopt优化器是目前最为通用的贝叶斯优化器之一,Hyperopt中集成了包括随机搜索、模拟退火和TPE(Tree-structured Parzen Estimator Approach)等多种优化算法。相比于Bayes_opt,Hyperopt的是更先进、更现代、维护更好的优化器,也是我们最常用来实现TPE方法的优化器。在实际使用中,相比基于高斯过程的贝叶斯优化,基于高斯混合模型的TPE在大多数情况下以更高效率获得更优结果,该方法目前也被广泛应用于AutoML领域中。TPE算法原理可以参阅原论文,在这里我们将重点介绍关于Hyperopt中使用TPE进行超参数搜索的过程。
import hyperopt
from hyperopt import hp, fmin, tpe, Trials, partial
from hyperopt.early_stop import no_progress_loss
1 目标函数的输入必须是符合hyperopt规定的字典,不能是类似于sklearn的参数空间字典、不能是参数本身,更不能是数据、算法等超参数以外的元素。因此在自定义目标函数时,我们需要让超参数空间字典作为目标函数的输入。
2 Hyperopt只支持寻找 f ( x ) f(x) f(x)的最小值,不支持寻找最大值,因此当我们定义的目标函数是某种正面的评估指标时(如准确率,auc),我们需要对该评估指标取负。如果我们定义的目标函数是负损失,也需要对负损失取绝对值。当且仅当我们定义的目标函数是普通损失时,我们才不需要改变输出。
def hyperopt_objective(params):
#定义评估器
#需要搜索的参数需要从输入的字典中索引出来
#不需要搜索的参数,可以是设置好的某个值
#在需要整数的参数前调整参数类型
reg = RFR(n_estimators = int(params["n_estimators"])
,max_depth = int(params["max_depth"])
,max_features = int(params["max_features"])
,min_impurity_decrease = params["min_impurity_decrease"]
,random_state=1412
,verbose=False
,n_jobs=-1)
#交叉验证结果,输出负根均方误差(-RMSE)
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
validation_loss = cross_validate(reg,X,y
,scoring="neg_root_mean_squared_error"
,cv=cv
,verbose=False
,n_jobs=-1
,error_score='raise'
)
#最终输出结果,由于只能取最小值,所以必须对(-RMSE)求绝对值
#以求解最小RMSE所对应的参数组合
return np.mean(abs(validation_loss["test_score"]))
在hyperopt中,我们使用特殊的字典形式来定义参数空间,其中键值对上的键可以任意设置,只要与目标函数中索引参数的键一致即可,键值对的值则是hyperopt独有的hp函数,包括了:
hp.quniform(“参数名称”, 下界, 上界, 步长) - 适用于均匀分布的浮点数
hp.uniform(“参数名称”,下界, 上界) - 适用于随机分布的浮点数
hp.randint(“参数名称”,上界) - 适用于[0,上界)的整数,区间为前闭后开
hp.choice(“参数名称”,[“字符串1”,“字符串2”,…]) - 适用于字符串类型,最优参数由索引表示
hp.choice(“参数名称”,[*range(下界,上界,步长)]) - 适用于整数型,最优参数由索引表示
hp.choice(“参数名称”,[整数1,整数2,整数3,…]) - 适用于整数型,最优参数由索引表示
hp.choice(“参数名称”,[“字符串1”,整数1,…]) - 适用于字符与整数混合,最优参数由索引表示
在hyperopt的说明当中,并未明确参数取值范围空间的开闭,根据实验,如无特殊说明,hp中的参数空间定义方法应当都为前闭后开区间。我们依然使用在随机森林上获得最高分的随机搜索的参数空间:
param_grid_simple = {'n_estimators': hp.quniform("n_estimators",80,100,1)
, 'max_depth': hp.quniform("max_depth",10,25,1)
, "max_features": hp.quniform("max_features",10,20,1)
, "min_impurity_decrease":hp.quniform("min_impurity_decrease",0,5,1)
}
由于hp.choice最终会返回最优参数的索引,容易与数值型参数的具体值混淆,而hp.randint又只能够支持从0开始进行计数,因此我们常常会使用quniform获得均匀分布的浮点数来替代整数。对于需要取整数的参数值,如果采用quniform方式构筑参数空间,则需要在目标函数中使用int函数限定输入类型。例如,在范围[0,5]中取值时,可以取出[0.0, 1.0, 2.0, 3.0,…]这种均匀浮点数,在输入目标函数时,则必须确保参数值前存在int函数。当然,如果使用hp.choice则不会存在该问题。
algo
),一般来说我们有tpe.suggest
以及rand.suggest
两种选项,前者指代TPE方法,后者指代随机网格搜索方法。我们还可以通过partial功能来修改算法涉及到的具体参数,包括模型具体使用了多少个初始观测值(参数n_start_jobs
),以及在计算采集函数值时究竟考虑多少个样本(参数n_EI_candidates
)。当然,我们也可以不填写这些参数,就使用默认的参数值。trials
,另一个是提前停止参数early_stop_fn
。其中,trials
直译为“实验”或“测试”,表示我们不断尝试的每一种参数组合,这个参数中我们一般输入从hyperopt库中导入的方法Trials(),当优化完成之后,我们可以从保存好的trials中查看损失、参数等各种中间信息;而提前停止参数early_stop_fn
中我们一般输入从hyperopt库导入的方法no_progress_loss(),这个方法中可以输入具体的数字n,表示当损失连续n次没有下降时,让算法提前停止。由于贝叶斯方法的随机性较高,当样本量不足时需要多次迭代才能够找到最优解,因此一般no_progress_loss()中的数值不会设置得太高。在我们的课程中,由于数据量较少,我设置了一个较高的值来避免迭代停止太早。def param_hyperopt(max_evals=100):
#保存迭代过程
trials = Trials()
#设置提前停止
early_stop_fn = no_progress_loss(100)
#定义代理模型
#algo = partial(tpe.suggest, n_startup_jobs=20, n_EI_candidates=50)
params_best = fmin(hyperopt_objective #目标函数
, space = param_grid_simple #参数空间
, algo = tpe.suggest #代理模型你要哪个呢?
#, algo = algo
, max_evals = max_evals #允许的迭代次数
, verbose=True
, trials = trials
, early_stop_fn = early_stop_fn
)
#打印最优参数,fmin会自动打印最佳分数
print("\n","\n","best params: ", params_best,
"\n")
return params_best, trials
def hyperopt_validation(params):
reg = RFR(n_estimators = int(params["n_estimators"])
,max_depth = int(params["max_depth"])
,max_features = int(params["max_features"])
,min_impurity_decrease = params["min_impurity_decrease"]
,random_state=1412
,verbose=False
,n_jobs=-1
)
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
validation_loss = cross_validate(reg,X,y
,scoring="neg_root_mean_squared_error"
,cv=cv
,verbose=False
,n_jobs=-1
)
return np.mean(abs(validation_loss["test_score"]))
params_best, trials = param_hyperopt(30) #1%的空间大小
由于具有提前停止功能,因此基于TPE的hyperopt优化可能在我们设置的迭代次数被达到之前就停止,也因此hyperopt迭代到实际最优值所需的迭代次数可能更少。同时,TPE方法相比于高斯过程计算会更加迅速,因此在运行277次迭代的情况下,hyperopt只需要1分钟时间,而运行300次迭代的bayes_opt却需要2.11分钟,可见,即便运行同样的迭代次数,hyperopt也是更有优势的,这或许是因为hyperopt的参数空间更加稀疏、在整数型参数搜索上更高效。
不过HyperOpt的缺点也很明显,那就是代码精密度要求较高、灵活性较差,略微的改动就可能让代码疯狂报错难以跑通。同时,HyperOpt所支持的优化算法也不够多,如果我们专注地使用TPE方法,则掌握HyperOpt即可,如果我们希望拥有丰富的HPO手段,则可以更深入地接触Optuna库。
Optuna是目前为止最为成熟、拓展性最强的超参数优化框架,与古旧的bayes_opt相比,Optuna明显是专门为机器学习和深度学习所设计。为了满足机器学习开发者的需求,Optuna拥有强大且固定的API,因此Optuna代码简单,编写高度模块化,是我们介绍的库中代码最为简练的库。Optuna的优势在于,它可以无缝衔接到PyTorch、Tensorflow等深度学习框架上,也可以与sklearn的优化库scikit-optimize结合使用,因此Optuna可以被用于各种各样的优化场景。在我们的课程中,我们将重点介绍Optuna实现贝叶斯优化的过程,其他优化方面内容可以参考以下页面:地址。
import optuna
def optuna_objective(trial):
#定义参数空间
n_estimators = trial.suggest_int("n_estimators",80,100,1) #整数型,(参数名称,下界,上界,步长)
max_depth = trial.suggest_int("max_depth",10,25,1)
max_features = trial.suggest_int("max_features",10,20,1)
#max_features = trial.suggest_categorical("max_features",["log2","sqrt","auto"]) #字符型
min_impurity_decrease = trial.suggest_int("min_impurity_decrease",0,5,1)
#min_impurity_decrease = trial.suggest_float("min_impurity_decrease",0,5,log=False) #浮点型
#定义评估器
#需要优化的参数由上述参数空间决定
#不需要优化的参数则直接填写具体值
reg = RFR(n_estimators = n_estimators
,max_depth = max_depth
,max_features = max_features
,min_impurity_decrease = min_impurity_decrease
,random_state=1412
,verbose=False
,n_jobs=-1
)
#交叉验证过程,输出负均方根误差(-RMSE)
#optuna同时支持最大化和最小化,因此如果输出-RMSE,则选择最大化
#如果选择输出RMSE,则选择最小化
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
validation_loss = cross_validate(reg,X,y
,scoring="neg_root_mean_squared_error"
,cv=cv #交叉验证模式
,verbose=False #是否打印进程
,n_jobs=-1 #线程数
,error_score='raise'
)
#最终输出RMSE
return np.mean(abs(validation_loss["test_score"]))
algo
来自定义用于执行贝叶斯优化的具体算法,在Optuna中我们也可以。大部分备选的算法都集中在Optuna的模块sampler中,包括我们熟悉的TPE优化、随机网格搜索以及其他各类更加高级的贝叶斯过程,对于Optuna.sampler中调出的类,我们也可以直接输入参数来设置初始观测值的数量、以及每次计算采集函数时所考虑的观测值量。在Optuna库中并没有集成实现高斯过程的方法,但我们可以从scikit-optimize里面导入高斯过程来作为optuna中的algo
设置,而具体的高斯过程相关的参数则可以通过如下方法进行设置:def optimizer_optuna(n_trials, algo):
#定义使用TPE或者GP
if algo == "TPE":
algo = optuna.samplers.TPESampler(n_startup_trials = 10, n_ei_candidates = 24)
elif algo == "GP":
from optuna.integration import SkoptSampler
import skopt
algo = SkoptSampler(skopt_kwargs={'base_estimator':'GP', #选择高斯过程
'n_initial_points':10, #初始观测点10个
'acq_func':'EI'} #选择的采集函数为EI,期望增量
)
#实际优化过程,首先实例化优化器
study = optuna.create_study(sampler = algo #要使用的具体算法
, direction="minimize" #优化的方向,可以填写minimize或maximize
)
#开始优化,n_trials为允许的最大迭代次数
#由于参数空间已经在目标函数中定义好,因此不需要输入参数空间
study.optimize(optuna_objective #目标函数
, n_trials=n_trials #最大迭代次数(包括最初的观测值的)
, show_progress_bar=True #要不要展示进度条呀?
)
#可直接从优化好的对象study中调用优化的结果
#打印最佳参数与最佳损失值
print("\n","\n","best params: ", study.best_trial.params,
"\n","\n","best score: ", study.best_trial.values,
"\n")
return study.best_trial.params, study.best_trial.values
best_params, best_score = optimizer_optuna(10,"GP") #默认打印迭代过程
很显然,基于高斯过程的贝叶斯优化是比基于TPE的贝叶斯优化运行更加缓慢的。在Optuna进行调试时,我并没有多次运行并取出Optuna表现最好的值,因此我们可以不将Optuna的结果最终放入表格进行比较,不过在TPE模式下,其运行速度与HyperOpt的运行速度高度接近。在未来的课程中,除非特殊说明,我们将默认使用TPE方法进行优化。