1、简介:
这个模块包含一系列的常用图像处理算法。
2、分析:
此模块包含的文件如下图:
其导出算法包括如下:
/*M///
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_IMGPROC_IMGPROC_C_H__
#define __OPENCV_IMGPROC_IMGPROC_C_H__
#include "opencv2/core/core_c.h"
#include "opencv2/imgproc/types_c.h"
#ifdef __cplusplus
extern "C" {
#endif
/*********************** Background statistics accumulation *****************************/
/* Adds image to accumulator */
CVAPI(void) cvAcc( const CvArr* image, CvArr* sum,
const CvArr* mask CV_DEFAULT(NULL) );
/* Adds squared image to accumulator */
CVAPI(void) cvSquareAcc( const CvArr* image, CvArr* sqsum,
const CvArr* mask CV_DEFAULT(NULL) );
/* Adds a product of two images to accumulator */
CVAPI(void) cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc,
const CvArr* mask CV_DEFAULT(NULL) );
/* Adds image to accumulator with weights: acc = acc*(1-alpha) + image*alpha */
CVAPI(void) cvRunningAvg( const CvArr* image, CvArr* acc, double alpha,
const CvArr* mask CV_DEFAULT(NULL) );
/****************************************************************************************\
* Image Processing *
\****************************************************************************************/
/* Copies source 2D array inside of the larger destination array and
makes a border of the specified type (IPL_BORDER_*) around the copied area. */
CVAPI(void) cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset,
int bordertype, CvScalar value CV_DEFAULT(cvScalarAll(0)));
/* Smoothes array (removes noise) */
CVAPI(void) cvSmooth( const CvArr* src, CvArr* dst,
int smoothtype CV_DEFAULT(CV_GAUSSIAN),
int size1 CV_DEFAULT(3),
int size2 CV_DEFAULT(0),
double sigma1 CV_DEFAULT(0),
double sigma2 CV_DEFAULT(0));
/* Convolves the image with the kernel */
CVAPI(void) cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel,
CvPoint anchor CV_DEFAULT(cvPoint(-1,-1)));
/* Finds integral image: SUM(X,Y) = sum(x.
After that sum of histogram bins is equal to */
CVAPI(void) cvNormalizeHist( CvHistogram* hist, double factor );
/* Clear all histogram bins that are below the threshold */
CVAPI(void) cvThreshHist( CvHistogram* hist, double threshold );
/* Compares two histogram */
CVAPI(double) cvCompareHist( const CvHistogram* hist1,
const CvHistogram* hist2,
int method);
/* Copies one histogram to another. Destination histogram is created if
the destination pointer is NULL */
CVAPI(void) cvCopyHist( const CvHistogram* src, CvHistogram** dst );
/* Calculates bayesian probabilistic histograms
(each or src and dst is an array of histograms */
CVAPI(void) cvCalcBayesianProb( CvHistogram** src, int number,
CvHistogram** dst);
/* Calculates array histogram */
CVAPI(void) cvCalcArrHist( CvArr** arr, CvHistogram* hist,
int accumulate CV_DEFAULT(0),
const CvArr* mask CV_DEFAULT(NULL) );
CV_INLINE void cvCalcHist( IplImage** image, CvHistogram* hist,
int accumulate CV_DEFAULT(0),
const CvArr* mask CV_DEFAULT(NULL) )
{
cvCalcArrHist( (CvArr**)image, hist, accumulate, mask );
}
/* Calculates back project */
CVAPI(void) cvCalcArrBackProject( CvArr** image, CvArr* dst,
const CvHistogram* hist );
#define cvCalcBackProject(image, dst, hist) cvCalcArrBackProject((CvArr**)image, dst, hist)
/* Does some sort of template matching but compares histograms of
template and each window location */
CVAPI(void) cvCalcArrBackProjectPatch( CvArr** image, CvArr* dst, CvSize range,
CvHistogram* hist, int method,
double factor );
#define cvCalcBackProjectPatch( image, dst, range, hist, method, factor ) \
cvCalcArrBackProjectPatch( (CvArr**)image, dst, range, hist, method, factor )
/* calculates probabilistic density (divides one histogram by another) */
CVAPI(void) cvCalcProbDensity( const CvHistogram* hist1, const CvHistogram* hist2,
CvHistogram* dst_hist, double scale CV_DEFAULT(255) );
/* equalizes histogram of 8-bit single-channel image */
CVAPI(void) cvEqualizeHist( const CvArr* src, CvArr* dst );
/* Applies distance transform to binary image */
CVAPI(void) cvDistTransform( const CvArr* src, CvArr* dst,
int distance_type CV_DEFAULT(CV_DIST_L2),
int mask_size CV_DEFAULT(3),
const float* mask CV_DEFAULT(NULL),
CvArr* labels CV_DEFAULT(NULL),
int labelType CV_DEFAULT(CV_DIST_LABEL_CCOMP));
/* Applies fixed-level threshold to grayscale image.
This is a basic operation applied before retrieving contours */
CVAPI(double) cvThreshold( const CvArr* src, CvArr* dst,
double threshold, double max_value,
int threshold_type );
/* Applies adaptive threshold to grayscale image.
The two parameters for methods CV_ADAPTIVE_THRESH_MEAN_C and
CV_ADAPTIVE_THRESH_GAUSSIAN_C are:
neighborhood size (3, 5, 7 etc.),
and a constant subtracted from mean (...,-3,-2,-1,0,1,2,3,...) */
CVAPI(void) cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value,
int adaptive_method CV_DEFAULT(CV_ADAPTIVE_THRESH_MEAN_C),
int threshold_type CV_DEFAULT(CV_THRESH_BINARY),
int block_size CV_DEFAULT(3),
double param1 CV_DEFAULT(5));
/* Fills the connected component until the color difference gets large enough */
CVAPI(void) cvFloodFill( CvArr* image, CvPoint seed_point,
CvScalar new_val, CvScalar lo_diff CV_DEFAULT(cvScalarAll(0)),
CvScalar up_diff CV_DEFAULT(cvScalarAll(0)),
CvConnectedComp* comp CV_DEFAULT(NULL),
int flags CV_DEFAULT(4),
CvArr* mask CV_DEFAULT(NULL));
/****************************************************************************************\
* Feature detection *
\****************************************************************************************/
/* Runs canny edge detector */
CVAPI(void) cvCanny( const CvArr* image, CvArr* edges, double threshold1,
double threshold2, int aperture_size CV_DEFAULT(3) );
/* Calculates constraint image for corner detection
Dx^2 * Dyy + Dxx * Dy^2 - 2 * Dx * Dy * Dxy.
Applying threshold to the result gives coordinates of corners */
CVAPI(void) cvPreCornerDetect( const CvArr* image, CvArr* corners,
int aperture_size CV_DEFAULT(3) );
/* Calculates eigen values and vectors of 2x2
gradient covariation matrix at every image pixel */
CVAPI(void) cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv,
int block_size, int aperture_size CV_DEFAULT(3) );
/* Calculates minimal eigenvalue for 2x2 gradient covariation matrix at
every image pixel */
CVAPI(void) cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval,
int block_size, int aperture_size CV_DEFAULT(3) );
/* Harris corner detector:
Calculates det(M) - k*(trace(M)^2), where M is 2x2 gradient covariation matrix for each pixel */
CVAPI(void) cvCornerHarris( const CvArr* image, CvArr* harris_response,
int block_size, int aperture_size CV_DEFAULT(3),
double k CV_DEFAULT(0.04) );
/* Adjust corner position using some sort of gradient search */
CVAPI(void) cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners,
int count, CvSize win, CvSize zero_zone,
CvTermCriteria criteria );
/* Finds a sparse set of points within the selected region
that seem to be easy to track */
CVAPI(void) cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image,
CvArr* temp_image, CvPoint2D32f* corners,
int* corner_count, double quality_level,
double min_distance,
const CvArr* mask CV_DEFAULT(NULL),
int block_size CV_DEFAULT(3),
int use_harris CV_DEFAULT(0),
double k CV_DEFAULT(0.04) );
/* Finds lines on binary image using one of several methods.
line_storage is either memory storage or 1 x CvMat, its
number of columns is changed by the function.
method is one of CV_HOUGH_*;
rho, theta and threshold are used for each of those methods;
param1 ~ line length, param2 ~ line gap - for probabilistic,
param1 ~ srn, param2 ~ stn - for multi-scale */
CVAPI(CvSeq*) cvHoughLines2( CvArr* image, void* line_storage, int method,
double rho, double theta, int threshold,
double param1 CV_DEFAULT(0), double param2 CV_DEFAULT(0));
/* Finds circles in the image */
CVAPI(CvSeq*) cvHoughCircles( CvArr* image, void* circle_storage,
int method, double dp, double min_dist,
double param1 CV_DEFAULT(100),
double param2 CV_DEFAULT(100),
int min_radius CV_DEFAULT(0),
int max_radius CV_DEFAULT(0));
/* Fits a line into set of 2d or 3d points in a robust way (M-estimator technique) */
CVAPI(void) cvFitLine( const CvArr* points, int dist_type, double param,
double reps, double aeps, float* line );
#ifdef __cplusplus
}
#endif
#endif