代码地址:https://github.com/ardeal/yolo_nano
查看pt,cuda,cudnn版本:
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
1 将coco数据集转成voc数据集格式,并提取需要的类别(修改路径即可)
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw
#the path you want to save your results for coco to voc
# savepath="E:/PyTorch-YOLOv3-master/data/coco/train2017/"
# img_dir=savepath+'images/'
# anno_dir=savepath+'train_Annotations/'
# datasets_list=['train2017']
savepath="E:/PyTorch-YOLOv3-master/data/coco/val2017/"
img_dir=savepath+'images/'
anno_dir=savepath+'val_Annotations/'
datasets_list=['val2017']
classes_names = ['person']
#Store annotations and train2014/val2014/... in this folder
dataDir= 'E:/MS_COCO/'
headstr = """\
VOC
%s
NULL
company
%d
%d
%d
0
"""
objstr = """\
"""
tailstr = '''\
'''
#if the dir is not exists,make it,else delete it
def mkr(path):
if os.path.exists(path):
shutil.rmtree(path)
os.mkdir(path)
else:
os.mkdir(path)
mkr(img_dir)
mkr(anno_dir)
def id2name(coco):
classes=dict()
for cls in coco.dataset['categories']:
classes[cls['id']]=cls['name']
return classes
def write_xml(anno_path,head, objs, tail):
f = open(anno_path, "w")
f.write(head)
for obj in objs:
f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
f.write(tail)
def save_annotations_and_imgs(coco,dataset,filename,objs):
#eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
anno_path=anno_dir+filename[:-3]+'xml'
img_path=dataDir+dataset+'/'+filename
# print(img_path)
dst_imgpath=img_dir+filename
img=cv2.imread(img_path)
if (img.shape[2] == 1):
# print(filename + " not a RGB image")
return
shutil.copy(img_path, dst_imgpath)
head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
tail = tailstr
write_xml(anno_path,head, objs, tail)
def showimg(coco,dataset,img,classes,cls_id,show=True):
global dataDir
I=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name']))
#通过id,得到注释的信息
annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
# print(annIds)
anns = coco.loadAnns(annIds)
# print(anns)
# coco.showAnns(anns)
objs = []
for ann in anns:
class_name=classes[ann['category_id']]
if class_name in classes_names:
# print(class_name)
if 'bbox' in ann:
bbox=ann['bbox']
xmin = int(bbox[0])
ymin = int(bbox[1])
xmax = int(bbox[2] + bbox[0])
ymax = int(bbox[3] + bbox[1])
obj = [class_name, xmin, ymin, xmax, ymax]
objs.append(obj)
draw = ImageDraw.Draw(I)
draw.rectangle([xmin, ymin, xmax, ymax])
if show:
plt.figure()
plt.axis('off')
plt.imshow(I)
plt.show()
return objs
for dataset in datasets_list:
#./COCO/annotations/instances_train2014.json
annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)
#COCO API for initializing annotated data
coco = COCO(annFile)
'''
COCO 对象创建完毕后会输出如下信息:
loading annotations into memory...
Done (t=0.81s)
creating index...
index created!
至此, json 脚本解析完毕, 并且将图片和对应的标注数据关联起来.
'''
#show all classes in coco
classes = id2name(coco)
#print(classes)
#[1, 2, 3, 4, 6, 8]
classes_ids = coco.getCatIds(catNms=classes_names)
#print(classes_ids)
for cls in classes_names:
#Get ID number of this class
cls_id=coco.getCatIds(catNms=[cls])
img_ids=coco.getImgIds(catIds=cls_id)
#print(cls,len(img_ids))
# imgIds=img_ids[0:10]
for imgId in tqdm(img_ids):
img = coco.loadImgs(imgId)[0]
filename = img['file_name']
# print(filename)
objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
#print(objs)
save_annotations_and_imgs(coco, dataset, filename, objs)
2 生成训练测试文件
import os
import random
import xml.etree.ElementTree as ET
import pickle
from os import listdir, getcwd
from os.path import join
train_percent = 1.0
# xmlfilepath = 'E:/PyTorch-YOLOv3-master/data/coco/train2017/train_Annotations/'
# txtsavepath = 'E:/PyTorch-YOLOv3-master/data/coco/train2017/train2017.txt'
xmlfilepath = 'E:/PyTorch-YOLOv3-master/data/coco/val2017/val_Annotations/'
txtsavepath = 'E:/PyTorch-YOLOv3-master/data/coco/val2017/val2017.txt'
total_xml = os.listdir(xmlfilepath)
num=len(total_xml)
list=range(num)
tr=int(num*train_percent)
train= random.sample(list,tr)
ftrain = open(txtsavepath, 'w')
# ftest = open('ImageSets/Main/test.txt', 'w')
# ftrain = open('ImageSets/Main/train.txt', 'w')
# fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name=total_xml[i][:-4]+'\n'
if i in train:
ftrain.write(name)
# if i in train:
# ftrain.write(name)
# else:
# fval.write(name)
# else:
# ftest.write(name)
ftrain.close()
# ftrain.close()
# fval.close()
# ftest.close()
# sets=['train2017'] #替换为自己的数据集
sets=['val2017']
classes = ["person"] #修改为自己的类别
#classes = ["eye", "nose"]
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id):
# in_file = open('E:/PyTorch-YOLOv3-master/data/coco/train2017/train_Annotations/%s.xml' %(image_id)) #将数据集放于当前目录下
# out_file = open('E:/PyTorch-YOLOv3-master/data/coco/train2017/labels/%s.txt' %(image_id), 'w')
in_file = open('E:/PyTorch-YOLOv3-master/data/coco/val2017/val_Annotations/%s.xml' %(image_id)) #将数据集放于当前目录下
out_file = open('E:/PyTorch-YOLOv3-master/data/coco/val2017/labels/%s.txt' %(image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + ' ')
in_file.close()
out_file.close()
wd = getcwd()
for image_set in sets:
if not os.path.exists('E:/PyTorch-YOLOv3-master/'):
os.makedirs('E:/PyTorch-YOLOv3-master/')
# image_ids = open('E:/PyTorch-YOLOv3-master/data/coco/train2017/%s.txt'%(image_set)).read().strip().split()
# list_file = open('E:/PyTorch-YOLOv3-master/data/coco/train2017/train.txt', 'w')
image_ids = open('E:/PyTorch-YOLOv3-master/data/coco/val2017/%s.txt'%(image_set)).read().strip().split()
list_file = open('E:/PyTorch-YOLOv3-master/data/coco/val2017/val.txt', 'w')
for image_id in image_ids:
# list_file.write('E:/PyTorch-YOLOv3-master/data/coco/train2017/images/%s.jpg\n'%(image_id))
list_file.write('E:/PyTorch-YOLOv3-master/data/coco/val2017/images/%s.jpg\n'%(image_id))
convert_annotation(image_id)
list_file.close()
1 修改config/coco.data和data/coco.names文件
2 修改opt.py文件中的参数(num_classes、batch_size等)
3 可按需求修改network/yolo_nano_network.py中的输出格式:
self.num_classes = num_classes
self.image_size = image_size
self.num_anchors = 3
self.yolo_channels = (self.num_classes + 5) * self.num_anchors
anchors52 = [[10,13], [16,30], [33,23]] # 52x52
anchors26 = [[30,61], [62,45], [59,119]] # 26x26
anchors13 = [[116,90], [156,198], [373,326]] # 13x13
python train_yolonano.py
1 索引超出边界
Traceback (most recent call last):
File "train_yolonano.py", line 94, in <module>
loss, outputs = model(imgs, targets)
File "D:\Anaconda3\envs\pt\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "E:\Pytorch_yolo_nano-master\network\yolo_nano_network.py", line 137, in forward
temp, layer_loss = self.yolo_layer52(out_conv9, targets, image_size)
File "D:\Anaconda3\envs\pt\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "E:\Pytorch_yolo_nano-master\network\basic_layers.py", line 197, in forward
ignore_thres=self.ignore_thres,
File "E:\Pytorch_yolo_nano-master\utils\common_funcs.py", line 303, in build_targets
obj_mask[b, best_n, gj, gi] = 1
IndexError: index 52 is out of bounds for dimension 3 with size 52
解决方法:
修改文件E:\Pytorch_yolo_nano-master\utils\common_funcs.py
,增加边界判断
gx, gy = gxy.t()
gw, gh = gwh.t()
gi, gj = gxy.long().t()
# Set masks
gi[gi < 0] = 0
gj[gj < 0] = 0
gi[gi > nG - 1] = nG - 1
gj[gj > nG - 1] = nG - 1
# print(b, best_n, gj, gi)
obj_mask[b, best_n, gj, gi] = 1
noobj_mask[b, best_n, gj, gi] = 0