# !/usr/bin/env Python3 # -*- coding: utf-8 -*- # @version: v1.0 # @Author : Meng Li # @contact: [email protected] # @FILE : torch_seq2seq.py # @Time : 2022/6/8 11:11 # @Software : PyCharm # @site: # @Description : import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchsummary from torch.utils.data import Dataset, DataLoader import numpy as np import os class Seq2seq(nn.Module): def __init__(self, in_features, hidden_size): super().__init__() self.in_features = in_features self.hidden_size = hidden_size self.encoder = nn.RNN(input_size=in_features, hidden_size=hidden_size, dropout=0.5) # encoder self.decoder = nn.RNN(input_size=in_features, hidden_size=hidden_size, dropout=0.5) # 翻译的解码器 self.crition = nn.CrossEntropyLoss() self.fc = nn.Linear(hidden_size, in_features) def forward(self, enc_input, dec_input, dec_output): # enc_input.size() : [Batch_size,seq_len,embedding_size] -> [seq_len,Batch_size,embedding_size] enc_input = enc_input.permute(1, 0, 2) # [seq_len,Batch_size,embedding_size] dec_input = dec_input.permute(1, 0, 2) # [seq_len,Batch_size,embedding_size] # output:[seq_len,Batch_size,hidden_size] seq_len, batch_size, embedding_size = enc_input.size() h_0 = torch.rand(1, batch_size, self.hidden_size) _, ht = self.encoder(enc_input, h_0) # en_ht:[num_layers * num_directions,Batch_size,hidden_size] de_output, _ = self.decoder(dec_input, ht) # de_output:[seq_len,Batch_size,in_features] output = self.fc(de_output) output = output.permute(1, 0, 2) loss = 0 for i in range(len(output)): # 对seq的每一个输出进行二分类损失计算 loss += self.crition(output[i], dec_output[i]) return output, loss class my_dataset(Dataset): def __init__(self, enc_input, dec_input, dec_output): super().__init__() self.enc_input = enc_input self.dec_input = dec_input self.dec_output = dec_output def __getitem__(self, index): return self.enc_input[index], self.dec_input[index], self.dec_output[index] def __len__(self): return self.enc_input.size(0) def make_data1(seq_data): vocab = [i for i in "SE?abcdefghijklmnopqrstuvwxyz"] word2idx = {j: i for i, j in enumerate(vocab)} V = np.max([len(j) for i in seq_data for j in i]) # 求最长元素的长度 enc_input = [] dec_input = [] dec_output = [] for seq in seq_data: enc_input.append(np.eye(len(word2idx))[[word2idx[i] for i in seq[0] + (V - len(seq[0])) * "?" + 'E']]) dec_input.append(np.eye(len(word2idx))[[word2idx[i] for i in 'S' + seq[1] + (V - len(seq[1])) * "?"]]) dec_output.append([word2idx[i] for i in seq[1] + (V - len(seq[1])) * "?" + 'E']) return torch.tensor(enc_input).double(), torch.tensor(dec_input).double(), torch.LongTensor(dec_output).double() def train(): vocab = [i for i in "SE?abcdefghijklmnopqrstuvwxyz"] word2idx = {j: i for i, j in enumerate(vocab)} idx2word = {i: j for i, j in enumerate(vocab)} seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']] enc_input, dec_input, dec_output = make_data(seq_data) batch_size = 3 in_features = 29 hidden_size = 128 train_data = my_dataset(enc_input, dec_input, dec_output) train_iter = DataLoader(train_data, batch_size, shuffle=True) net = Seq2seq(in_features, hidden_size) net.train() learning_rate = 0.001 optimizer = optim.Adam(net.parameters(), lr=learning_rate) loss = 0 for i in range(1000): for en_input, de_input, de_output in train_iter: output, loss = net(en_input, de_input, de_output) pre = torch.argmax(output, 2) # pre_ques = [[idx2word[j] for j in i] for i in en_input.numpy()] pre_ret = [[idx2word[j] for j in i] for i in pre.detach().numpy()] optimizer.zero_grad() loss.backward() optimizer.step() if i % 100 == 0: print("step {0} loss {1}".format(i, loss)) torch.save(net, "translate.pt") def make_data(seq_data): enc_input_all, dec_input_all, dec_output_all = [], [], [] vocab = [i for i in "SE?abcdefghijklmnopqrstuvwxyz"] word2idx = {j: i for i, j in enumerate(vocab)} V = np.max([len(j) for i in seq_data for j in i]) # 求最长元素的长度 for seq in seq_data: for i in range(2): seq[i] = seq[i] + '?' * (V - len(seq[i])) # 'man??', 'women' enc_input = [word2idx[n] for n in (seq[0] + 'E')] dec_input = [word2idx[i] for i in [i for i in len(enc_input) * '?']] dec_output = [word2idx[n] for n in (seq[1] + 'E')] enc_input_all.append(np.eye(len(vocab))[enc_input]) dec_input_all.append(np.eye(len(vocab))[dec_input]) dec_output_all.append(dec_output) # not one-hot # make tensor return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all) def translate(word): vocab = [i for i in "SE?abcdefghijklmnopqrstuvwxyz"] idx2word = {i: j for i, j in enumerate(vocab)} V = 5 x, y, z = make_data([[word, "?" * V]]) if not os.path.exists("translate.pt"): train() net = torch.load("translate.pt") pre, loss = net(x, y, z) pre = torch.argmax(pre, 2)[0] pre_word = [idx2word[i] for i in pre.numpy()] pre_word = "".join([i.replace("?", "") for i in pre_word]) print(word, "-> ", pre_word[:pre_word.index('E')]) if __name__ == '__main__': translate('man')
老规矩,还是直接上代码
本代码主要实现了 采用RNN网络,构建seq2seq模型,对英文进行翻译。
seq2seq模型由编码器和解码器两个部分构成,编码器的输出作为隐含层传递到解码器
解码器的输入为随机初始化的,(这里采用全 ‘?’ 作为初始化内容)
解码器的输出为 [batch_size , seq_len , in_features] , 这里需要轮询seq_len个输出,采用交叉熵计算损失并累加。