深度卷积对抗神经网络 基础 第三部分 (WGAN-GP)

深度卷积对抗神经网络 基础 第三部分 (WGAN-GP)

Wasserstein GAN with Gradient Penalty (WGAN-GP)

我们在训练对抗神经网络的时候总是出现各种各样的问题。比如说模式奔溃 (mode collapse)和 梯度消失(vanishing gradient)的问题。

比如说,模式奔溃,指的是生成器的学习效率远高于辨别器的时候,那么学习一段时间过后,辨别器便无法再继续提供有用的损失信息,以至于生成器无法得到参考而塌陷到一个局部最小点中去。而梯度消失指的是当损失趋于无限大或者无限小时,损失函数的值变化基本可以视为忽略,那么梯度就会消失,进而停止学习或者学习效率基本为零。

正如GANs模型中,我们经常使用BCE损失函数 (BCE loss problem)来作为模型的损失函数,但是其会存在一定的模式奔溃和梯度消失的问题。 为了解决这个问题,WGAN使用 EMD (Earth mover’s distance) 距离,通过类比定义两个曲线之间距离的方式来定义其损失的函数。

EMD 用于分析两张图片的距离,其实是计算两个分布数据之间的距离,也就是所谓的推土机距离。当其应用于比较生成图像和真图像的距离时,其不会直接想BCEloss那样直接使用判别器的判别结果,而是根据计算生成图像和真图像的分布距离来作为反馈,这样就可以直接避免上述的两个问题。一来模式不会立刻崩溃,而是生成一组图片才会有一个评分结果,并且比较的不是单一图像的差距,而是生成图像和真图像的分布差距。其次,这个距离可以通过对critic函数限制来达到避免梯度消失的问题。

  • Function of amount and distance
  • Doesn’t have a flat regions when the distributions are very different
  • approximating EMD solves mode collapse and vanishing gradient from BCE LOSS

Wasserstein loss: with c(x) critic

Screenshot 2023-01-12 183853

这个函数需要满足 1-Lipschitz 连续条件。This function needs to be 1-Lipschitz Continuous to validate W-loss

其主要是满足训练时的稳定性条件,其斜率的绝对值被正负一所限制。 which will maintain some stability during training

深度卷积对抗神经网络 基础 第三部分 (WGAN-GP)_第1张图片

深度卷积对抗神经网络 基础 第三部分 (WGAN-GP)_第2张图片

相对于BCE损失函数,W损失函数如何可以变得更加稳定?enforce this condition (feature space)

这个模型通过加入一个修正项的方式来矫正其满足1-lipschitz条件。

那么如何权衡? How much to weigh this regularization term against the main loss function 如何权衡main loss和penalty使得其满足1-L 连续条件

方法一: 梯度惩罚 Gradient penalty

这个方法很简单,当梯度大于一时,我们通过修正项进行修正,使得学习稳定一些。而如何检测梯度的值也非常重要,如果每次计算损失都检测,那么一定是不值当的。因此我们对特征空间中的点进行插值的方式类进行计算。 x ^ \hat{x} x^便是插值点,我们只要计算插值点的梯度值来代替这一区域的梯度。

  • 通过在W-loss中加入一个gradient penalty,当其值大于一时,其gradient过于大,那么我们就控制其小于1.
  • 但是又无法对所有feature space中的点都进行插值,因此我们需要将真假照片进行插值处理来计算gradient。
  • gradient penalty 用来计算真假的gradient的理想值,我们想要这个值在与正负一的距离**<=1**。

Screenshot 2023-01-12 190733

插值interpolation x ^ \hat{x} x^的表示式为:
x ^ = ϵ x + ( 1 − ϵ ) g ( z ) \hat{x} = \epsilon x + (1- \epsilon)g(z) x^=ϵx+(1ϵ)g(z)

Screenshot 2023-01-12 190115

C 表示critisizer, G代表 generator,上述表达式中 第一项 E ( c ( x ) ) E(c(x)) E(c(x)) 指的是C识别真图片的期望,因此,越高越好。第二项 E ( c ( g ( x ) ) ) E(c(g(x))) Ec(g(x))指的是C识别假图片的期望,因此越低越高,这样 第一项减去第二项便是越高越好,因此总体来说,对于C来说,整体项越大越好,C的有效率越高。而在当C取到最有效的鉴别器后,这时,寻找最高效的生成器便是最重要的。那么反过来,第一项无法改变,而第二项则是越大越好,越大意味着C把假图片识别成了真图片,因此整体便是越小越好。这也是为什么会有 min max之说。

  • fake 分数越高, critic loss越高,因为fake图片的分数代表着其将假图片识别成1的分数高
  • real 分数越高,critic loss越低,因为其识别错误会是0,而识别正确是1,而critic要识别越正确越好,所以越高越好
  • gradient penalty越高,critic loss越低,因为其越高,其在中间点的gradient距离1越远,也就意味着其loss越大,因为其gradient和理想1有差别。

方法二: Weight clipping

通过给gradient加入一个上限和下限来使其满足1-L连续条件,问题是这种方法降低了学习能力和速率,不建议采用

深度卷积对抗神经网络 基础 第三部分 (WGAN-GP)_第3张图片

你可能感兴趣的:(人工智能,神经网络,深度学习,人工智能,生成对抗网络)