情感分析入门3-Faster Sentiment Analysis

系列文章目录

情感分析入门 1-Simple Sentiment Analysis

情感分析入门 2-Updated Sentiment Analysis


上一节中,我们使用情感分析的所有常见技巧,得到了84%的准确率。这一节中,我们将实现一个模型得到类似的结果,同时训练得更快并且使用大约一半的参数。具体来说,我们实现的是论文"Bags of Tricks for Efficient Text Classification"中的FastText模型。

数据准备

FastText论文的核心之一是计算输入句子的n-grams并将其添加到句子的末尾。这里我们使用bi-grams。

函数genertrate_bigrams接收已经被分词的句子,计算bi-grams并且将其添加到tokenized list的末尾。

def generate_bigrams(x):
    n_grams = set(zip(*[x[i:] for i in range(2)]))
    for n_gram in n_grams:
        x.append(' '.join(n_gram))
    return x

例子:

generate_bigrams(['This', 'film', 'is', 'terrible'])

['This', 'film', 'is', 'terrible', 'film is', 'This film', 'is terrible']

Filed有参数preprocessing。我们在句子tokenized(transformed from a string into a list of tokens)之后,numericalized(transformed from a list of tokens to a list of indexes)之前,传入generate_bigrams函数。

import torch
from torchtext.legacy import data
from torchtext.legacy import datasets

SEED = 1234

torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True

TEXT = data.Field(tokenize = 'spacy',
                  tokenizer_language = 'en_core_web_sm',
                  preprocessing = generate_bigrams)

LABEL = data.LabelField(dtype = torch.float)

#划分训练集、验证集和测试集

import random

train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

train_data, valid_data = train_data.split(random_state = random.seed(SEED))

#构建词典并载入pre-trained word embeddings

import random

train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

train_data, valid_data = train_data.split(random_state = random.seed(SEED))

#构造iterators

BATCH_SIZE = 64

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
    (train_data, valid_data, test_data), 
    batch_size = BATCH_SIZE, 
    device = device)

模型构建

这个模型比之前的模型参数量更少,是因为它只有2层:embedding layer and linear layer。没有RNN层。首先使用Embedding layer计算word embedding(blue),之后计算所有word embedding的平均值(pink),并将其送入Linear layer(silver)。

情感分析入门3-Faster Sentiment Analysis_第1张图片

我们使用函数avg_pool2d计算平均值( the words along the vertical axis and the embeddings along the horizontal axis)。avg_pool2d使用大小为embedded.shape[1](句子长度)的filter。我们计算filter覆盖的所有元素的平均值,然后filter向右滑动,计算句子中每个单词的下一列嵌入值的平均值。

情感分析入门3-Faster Sentiment Analysis_第2张图片
情感分析入门3-Faster Sentiment Analysis_第3张图片

在filter覆盖了所有的embedding dimensions之后,我们得到了一个[1x5]张量。将这个张量输入线性层来生成预测。

import torch.nn as nn
import torch.nn.functional as F

class FastText(nn.Module):
    def __init__(self, vocab_size, embedding_dim, output_dim, pad_idx):
        
        super().__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
        
        self.fc = nn.Linear(embedding_dim, output_dim)
        
    def forward(self, text):
        
        #text = [sent len, batch size]
        
        embedded = self.embedding(text)
                
        #embedded = [sent len, batch size, emb dim]
        
        embedded = embedded.permute(1, 0, 2)
        
        #embedded = [batch size, sent len, emb dim]
        
        pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1) 
        
        #pooled = [batch size, embedding_dim]
                
        return self.fc(pooled)

#构建实例

INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
OUTPUT_DIM = 1
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]

model = FastText(INPUT_DIM, EMBEDDING_DIM, OUTPUT_DIM, PAD_IDX)

#计算参数量

def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

print(f'The model has {count_parameters(model):,} trainable parameters')

#copy the pre-trained vectors to our embedding layer

pretrained_embeddings = TEXT.vocab.vectors

model.embedding.weight.data.copy_(pretrained_embeddings)

#zero the initial weight of unkown and padding tokens

UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]

model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)

模型训练

#初始化优化器

import torch.optim as optim

optimizer = optim.Adam(model.parameters())

#
criterion = nn.BCEWithLogitsLoss()

model = model.to(device)
criterion = criterion.to(device)

#
def binary_accuracy(preds, y):
    """
    Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
    """

    #round predictions to the closest integer
    rounded_preds = torch.round(torch.sigmoid(preds))
    correct = (rounded_preds == y).float() #convert into float for division 
    acc = correct.sum() / len(correct)
    return acc

#我们不再使用dropout,所以我们不需要使用model.train(),但正如第一节中提到的,it is good practice to use it。

def train(model, iterator, optimizer, criterion):
    
    epoch_loss = 0
    epoch_acc = 0
    
    model.train()
    
    for batch in iterator:
        
        optimizer.zero_grad()
        
        predictions = model(batch.text).squeeze(1)
        
        loss = criterion(predictions, batch.label)
        
        acc = binary_accuracy(predictions, batch.label)
        
        loss.backward()
        
        optimizer.step()
        
        epoch_loss += loss.item()
        epoch_acc += acc.item()
        
    return epoch_loss / len(iterator), epoch_acc / len(iterator)

#Note: again, we leave model.eval() even though we do not use dropout.

def evaluate(model, iterator, criterion):
    
    epoch_loss = 0
    epoch_acc = 0
    
    model.eval()
    
    with torch.no_grad():
    
        for batch in iterator:

            predictions = model(batch.text).squeeze(1)
            
            loss = criterion(predictions, batch.label)
            
            acc = binary_accuracy(predictions, batch.label)

            epoch_loss += loss.item()
            epoch_acc += acc.item()
        
    return epoch_loss / len(iterator), epoch_acc / len(iterator)

#
import time

def epoch_time(start_time, end_time):
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs

#
N_EPOCHS = 5

best_valid_loss = float('inf')

for epoch in range(N_EPOCHS):

    start_time = time.time()
    
    train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
    valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
    
    end_time = time.time()

    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    
    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        torch.save(model.state_dict(), 'tut3-model.pt')
    
    print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. Acc: {valid_acc*100:.2f}%')

#
model.load_state_dict(torch.load('tut3-model.pt'))

test_loss, test_acc = evaluate(model, test_iterator, criterion)

print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')

用户输入

import spacy
nlp = spacy.load('en_core_web_sm')

def predict_sentiment(model, sentence):
    model.eval()
    tokenized = generate_bigrams([tok.text for tok in nlp.tokenizer(sentence)])
    indexed = [TEXT.vocab.stoi[t] for t in tokenized]
    tensor = torch.LongTensor(indexed).to(device)
    tensor = tensor.unsqueeze(1)
    prediction = torch.sigmoid(model(tensor))
    return prediction.item()

predict_sentiment(model, "This film is terrible")
predict_sentiment(model, "This film is great")

你可能感兴趣的:(人工智能,神经网络,深度学习)