任务一:基于机器学习的文本分类
本次任务是利用CNN和RNN对文本的情感进行分类。数据集和上一节相同。训练集有15万余项,语言为英文,情感分为0-4共五类情感。本次任务参照博客 NLP-Beginner 任务二:基于深度学习的文本分类,流程如下:输入数据→特征提取→神经网络设计→结果输出。
词嵌入,即将词汇映射为实数向量。词嵌入模型的好处有:1)当向量数值设置合理时,词向量与词向量之间的距离也有一定的语义,能体现出词与词之间的相似性。2)用相对较少的维数展现多角度的特征差异。
我们不关心向量的数值大小表示什么意思,我们只关心这个数值设置得是否合理。换句话说,每个词向量都是参数,是待定的,需要求解。
词嵌入模型的初始化有两种方式:随机初始化和预训练模型初始化。其中,预训练模型初始化,顾名思义,就是拿别人已经训练好的模型作为初值。这种方式的初始化时间会比较长,因为要从别人的词库中找,本文会用到Glove。
卷积层的设计参考了论文Convolutional Neural Networks for Sentence Classification。
先定义一些符号,n 是句子的长度,图中的例子(wait for the video and do n’t rent it)是n = 9 ,词向量的长度为d ,图中的例子d = 6 ,即该句子的特征矩阵。
在本次任务中,我们采用四个卷积核,大小分别是2×d,3×d,4×d,5×d。这里采用四个核的原因是想挖掘词组的特征。比如说,2 × d 的核是用来挖掘两个连续单词之间的关系。2×d的卷积核在图中显示为红色框,3×d的卷积核在图中显示为黄色框。
“wait for” 这个词组,的特征矩阵的大小为2 × d 2\times d2×d,经过2 × d 2\times d2×d的卷积之后,会变成一个值。对于某一个核W,对特征矩阵X进行卷积之后,会得到一个矩阵。特征矩阵 与卷积核卷积后,得到结果。
在全连接层,利用线性变换p = AY + b,把长度为*4的向量转换成长度为5的向量。
在CNN中,我们是直接对特征矩阵X进行操作,而在RNN中,我们是逐个对进行操作,步骤如下:
初始化
从 t = 1,2,3,...,n计算以下两个公式:
(1)
最终得到
main.py
import csv
import random
from feature_batch import Random_embedding,Glove_embedding
import torch
from comparison_plot_batch import NN_embedding_plot
# 数据读入
with open('train.tsv') as f:
tsvreader = csv.reader (f, delimiter ='\t')
temp = list ( tsvreader )
with open('glove.6B.50d.txt','rb') as f: # for glove embedding
lines=f.readlines()
# 用GloVe创建词典
trained_dict=dict()
n=len(lines)
for i in range(n):
line=lines[i].split()
trained_dict[line[0].decode("utf-8").upper()]=[float(line[j]) for j in range(1,51)]
# 初始化
iter_times=50 # 做50个epoch
alpha=0.001
# 程序开始
data = temp[1:]
batch_size=500
# 随机初始化
random.seed(2021)
random_embedding=Random_embedding(data=data)
random_embedding.get_words() # 找到所有单词,并标记ID
random_embedding.get_id() # 找到每个句子拥有的单词ID
# 预训练模型初始化
random.seed(2021)
glove_embedding=Glove_embedding(data=data,trained_dict=trained_dict)
glove_embedding.get_words() # 找到所有单词,并标记ID
glove_embedding.get_id() # 找到每个句子拥有的单词ID
NN_embedding_plot(random_embedding,glove_embedding,alpha,batch_size,iter_times))
特征提取——feature_batch.py
import random
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
import torch
def data_split(data, test_rate=0.3):
"""把数据按一定比例划分成训练集和测试集"""
train = list()
test = list()
for datum in data:
if random.random() > test_rate:
train.append(datum)
else:
test.append(datum)
return train, test
class Random_embedding():
"""随机初始化"""
def __init__(self, data, test_rate=0.3):
self.dict_words = dict() # 单词->ID的映射
data.sort(key=lambda x:len(x[2].split())) # 按照句子长度排序,短着在前,这样做可以避免后面一个batch内句子长短不一,导致padding过度
self.data = data
self.len_words = 0 # 单词数目(包括padding的ID:0)
self.train, self.test = data_split(data, test_rate=test_rate) # 训练集测试集划分
self.train_y = [int(term[3]) for term in self.train] # 训练集类别
self.test_y = [int(term[3]) for term in self.test] # 测试集类别
self.train_matrix = list() # 训练集的单词ID列表,叠成一个矩阵
self.test_matrix = list() # 测试集的单词ID列表,叠成一个矩阵
self.longest=0 # 记录最长的单词
def get_words(self):
for term in self.data:
s = term[2] # 取出句子
s = s.upper() # 记得要全部转化为大写!!(或者全部小写,否则一个单词例如i,I会识别成不同的两个单词)
words = s.split()
for word in words: # 一个一个单词寻找
if word not in self.dict_words:
self.dict_words[word] = len(self.dict_words)+1 # padding是第0个,所以要+1
self.len_words=len(self.dict_words) # 单词数目(暂未包括padding的ID:0)
def get_id(self):
for term in self.train: # 训练集
s = term[2]
s = s.upper()
words = s.split()
item=[self.dict_words[word] for word in words] # 找到id列表(未进行padding)
self.longest=max(self.longest,len(item)) # 记录最长的单词
self.train_matrix.append(item)
for term in self.test:
s = term[2]
s = s.upper()
words = s.split()
item = [self.dict_words[word] for word in words] # 找到id列表(未进行padding)
self.longest = max(self.longest, len(item)) # 记录最长的单词
self.test_matrix.append(item)
self.len_words += 1 # 单词数目(包括padding的ID:0)
class Glove_embedding():
def __init__(self, data,trained_dict,test_rate=0.3):
self.dict_words = dict() # 单词->ID的映射
self.trained_dict=trained_dict # 记录预训练词向量模型
data.sort(key=lambda x:len(x[2].split())) # 按照句子长度排序,短着在前,这样做可以避免后面一个batch内句子长短不一,导致padding过度
self.data = data
self.len_words = 0 # 单词数目(包括padding的ID:0)
self.train, self.test = data_split(data, test_rate=test_rate) # 训练集测试集划分
self.train_y = [int(term[3]) for term in self.train] # 训练集类别
self.test_y = [int(term[3]) for term in self.test] # 测试集类别
self.train_matrix = list() # 训练集的单词ID列表,叠成一个矩阵
self.test_matrix = list() # 测试集的单词ID列表,叠成一个矩阵
self.longest=0 # 记录最长的单词
self.embedding=list() # 抽取出用到的(预训练模型的)单词
def get_words(self):
self.embedding.append([0] * 50) # 先加padding的词向量
for term in self.data:
s = term[2] # 取出句子
s = s.upper() # 记得要全部转化为大写!!(或者全部小写,否则一个单词例如i,I会识别成不同的两个单词)
words = s.split()
for word in words: # 一个一个单词寻找
if word not in self.dict_words:
self.dict_words[word] = len(self.dict_words)+1 # padding是第0个,所以要+1
if word in self.trained_dict: # 如果预训练模型有这个单词,直接记录词向量
self.embedding.append(self.trained_dict[word])
else: # 预训练模型没有这个单词,初始化该词对应的词向量为0向量
# print(word)
# raise Exception("words not found!")
self.embedding.append([0]*50)
self.len_words=len(self.dict_words) # 单词数目(暂未包括padding的ID:0)
def get_id(self):
for term in self.train: # 训练集
s = term[2]
s = s.upper()
words = s.split()
item=[self.dict_words[word] for word in words] # 找到id列表(未进行padding)
self.longest=max(self.longest,len(item)) # 记录最长的单词
self.train_matrix.append(item)
for term in self.test:
s = term[2]
s = s.upper()
words = s.split()
item = [self.dict_words[word] for word in words] # 找到id列表(未进行padding)
self.longest = max(self.longest, len(item)) # 记录最长的单词
self.test_matrix.append(item)
self.len_words += 1 # 单词数目(暂未包括padding的ID:0)
class ClsDataset(Dataset):
"""自定义数据集的结构,pytroch基本功!!!"""
def __init__(self, sentence, emotion):
self.sentence = sentence # 句子
self.emotion= emotion # 情感类别
def __getitem__(self, item):
return self.sentence[item], self.emotion[item]
def __len__(self):
return len(self.emotion)
def collate_fn(batch_data):
"""自定义数据集的内数据返回方式,pytroch基本功!!!并进行padding!!!"""
sentence, emotion = zip(*batch_data)
sentences = [torch.LongTensor(sent) for sent in sentence] # 把句子变成Longtensor类型
padded_sents = pad_sequence(sentences, batch_first=True, padding_value=0) # 自动padding操作!!!
return torch.LongTensor(padded_sents), torch.LongTensor(emotion)
def get_batch(x,y,batch_size):
"""利用dataloader划分batch,pytroch基本功!!!"""
dataset = ClsDataset(x, y)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False,drop_last=True,collate_fn=collate_fn)
# shuffle是指每个epoch都随机打乱数据排列再分batch,
# 这里一定要设置成false,否则之前的排序会直接被打乱,
# drop_last是指不利用最后一个不完整的batch(数据大小不能被batch_size整除)
return dataloader
神经网络——Neural_network_batch.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class MY_RNN(nn.Module):
"""自己设计的RNN网络"""
def __init__(self, len_feature, len_hidden, len_words, typenum=5, weight=None, layer=1, nonlinearity='tanh',
batch_first=True, drop_out=0.5):
super(MY_RNN, self).__init__()
self.len_feature = len_feature # d的大小
self.len_hidden = len_hidden # l_h的大小
self.len_words = len_words # 单词的个数(包括padding)
self.layer = layer # 隐藏层层数
self.dropout=nn.Dropout(drop_out) # dropout层
if weight is None: # 随机初始化
x = nn.init.xavier_normal_(torch.Tensor(len_words, len_feature))
self.embedding = nn.Embedding(num_embeddings=len_words, embedding_dim=len_feature, _weight=x).cuda()
else: # GloVe初始化
self.embedding = nn.Embedding(num_embeddings=len_words, embedding_dim=len_feature, _weight=weight).cuda()
# 用nn.Module的内置函数定义隐藏层
self.rnn = nn.RNN(input_size=len_feature, hidden_size=len_hidden, num_layers=layer, nonlinearity=nonlinearity,
batch_first=batch_first, dropout=drop_out).cuda()
# 全连接层
self.fc = nn.Linear(len_hidden, typenum).cuda()
# 冗余的softmax层,可以不加
# self.act = nn.Softmax(dim=1)
def forward(self, x):
"""x:数据,维度为[batch_size, 句子长度]"""
x = torch.LongTensor(x).cuda()
batch_size = x.size(0)
"""经过词嵌入后,维度为[batch_size,句子长度,d]"""
out_put = self.embedding(x) # 词嵌入
out_put=self.dropout(out_put) # dropout层
# 另一种初始化h_0的方式
# h0 = torch.randn(self.layer, batch_size, self.len_hidden).cuda()
# 初始化h_0为0向量
h0 = torch.autograd.Variable(torch.zeros(self.layer, batch_size, self.len_hidden)).cuda()
"""dropout后不变,经过隐藏层后,维度为[1,batch_size, l_h]"""
_, hn = self.rnn(out_put, h0) # 隐藏层计算
"""经过全连接层后,维度为[1,batch_size, 5]"""
out_put = self.fc(hn).squeeze(0) # 全连接层
"""挤掉第0维度,返回[batch_size, 5]的数据"""
# out_put = self.act(out_put) # 冗余的softmax层,可以不加
return out_put
class MY_CNN(nn.Module):
def __init__(self, len_feature, len_words, longest, typenum=5, weight=None,drop_out=0.5):
super(MY_CNN, self).__init__()
self.len_feature = len_feature # d的大小
self.len_words = len_words # 单词数目
self.longest = longest # 最长句子单词书目
self.dropout = nn.Dropout(drop_out) # Dropout层
if weight is None: # 随机初始化
x = nn.init.xavier_normal_(torch.Tensor(len_words, len_feature))
self.embedding = nn.Embedding(num_embeddings=len_words, embedding_dim=len_feature, _weight=x).cuda()
else: # GloVe初始化
self.embedding = nn.Embedding(num_embeddings=len_words, embedding_dim=len_feature, _weight=weight).cuda()
# Conv2d参数详解:(输入通道数:1,输出通道数:l_l,卷积核大小:(行数,列数))
# padding是指往句子两侧加 0,因为有的句子只有一个单词
# 那么 X 就是 1*50 对 W=2*50 的卷积核根本无法进行卷积操作
# 因此要在X两侧行加0(两侧列不加),(padding=(1,0))变成 3*50
# 又比如 padding=(2,0)变成 5*50
self.conv1 = nn.Sequential(nn.Conv2d(1, longest, (2, len_feature), padding=(1, 0)), nn.ReLU()).cuda() # 第1个卷积核+激活层
self.conv2 = nn.Sequential(nn.Conv2d(1, longest, (3, len_feature), padding=(1, 0)), nn.ReLU()).cuda() # 第2个卷积核+激活层
self.conv3 = nn.Sequential(nn.Conv2d(1, longest, (4, len_feature), padding=(2, 0)), nn.ReLU()).cuda() # 第3个卷积核+激活层
self.conv4 = nn.Sequential(nn.Conv2d(1, longest, (5, len_feature), padding=(2, 0)), nn.ReLU()).cuda() # 第4个卷积核+激活层
# 全连接层
self.fc = nn.Linear(4 * longest, typenum).cuda()
# 冗余的softmax层,可以不加
# self.act = nn.Softmax(dim=1)
def forward(self, x):
"""x:数据,维度为[batch_size, 句子长度]"""
x = torch.LongTensor(x).cuda()
"""经过词嵌入后,维度为[batch_size,1,句子长度,d]"""
out_put = self.embedding(x).view(x.shape[0], 1, x.shape[1], self.len_feature) # 词嵌入
"""dropout后不变,记为X"""
out_put=self.dropout(out_put) # dropout层
"""X经过2*d卷积后,维度为[batch_size,l_l,句子长度+2-1,1]"""
"""挤掉第三维度(维度从0开始),[batch_size,l_l,句子长度+2-1]记为Y_1"""
"""注意:句子长度+2-1的2是padding造成的行数扩张"""
conv1 = self.conv1(out_put).squeeze(3) # 第1个卷积
"""X经过3*d卷积后,维度为[batch_size,l_l,句子长度+2-2,1]"""
"""挤掉第三维度(维度从0开始),[batch_size,l_l,句子长度+2-2]记为Y_2"""
conv2 = self.conv2(out_put).squeeze(3) # 第2个卷积
"""X经过4*d卷积后,维度为[batch_size,l_l,句子长度+4-3,1]"""
"""挤掉第三维度(维度从0开始),[batch_size,l_l,句子长度+4-3]记为Y_3"""
conv3 = self.conv3(out_put).squeeze(3) # 第3个卷积
"""X经过5*d卷积后,维度为[batch_size,l_l,句子长度+4-4,1]"""
"""挤掉第三维度(维度从0开始),[batch_size,l_l,句子长度+4-4]记为Y_4"""
conv4 = self.conv4(out_put).squeeze(3) # 第4个卷积
"""分别对(Y_1,Y_2,Y_3,Y_4)的第二维(维度从0开始)进行pooling"""
"""得到4个[batch_size,,l_l,1]的向量"""
pool1 = F.max_pool1d(conv1, conv1.shape[2])
pool2 = F.max_pool1d(conv2, conv2.shape[2])
pool3 = F.max_pool1d(conv3, conv3.shape[2])
pool4 = F.max_pool1d(conv4, conv4.shape[2])
"""拼接得到[batch_size,,l_l*4,1]的向量"""
"""挤掉第二维(维度从0开始)为[batch_size,,l_l*4]"""
pool = torch.cat([pool1, pool2, pool3, pool4], 1).squeeze(2) # 拼接起来
"""经过全连接层后,维度为[batch_size, 5]"""
out_put = self.fc(pool) # 全连接层
# out_put = self.act(out_put) # 冗余的softmax层,可以不加
return out_put
结果&画图——comparison_plot_batch.py
import matplotlib.pyplot
import torch
import torch.nn.functional as F
from torch import optim
from Neural_Network_batch import MY_RNN,MY_CNN
from feature_batch import get_batch
def NN_embdding(model, train,test, learning_rate, iter_times):
# 定义优化器(求参数)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 损失函数
loss_fun = F.cross_entropy
# 损失值记录
train_loss_record=list()
test_loss_record=list()
long_loss_record=list()
# 准确率记录
train_record=list()
test_record=list()
long_record=list()
# torch.autograd.set_detect_anomaly(True)
# 训练阶段
for iteration in range(iter_times):
model.train() # 重要!!!进入非训练模式
for i, batch in enumerate(train):
x, y = batch # 取一个batch
y=y.cuda()
pred = model(x).cuda() # 计算输出
optimizer.zero_grad() # 梯度初始化
loss = loss_fun(pred, y).cuda() # 损失值计算
loss.backward() # 反向传播梯度
optimizer.step() # 更新参数
model.eval() # 重要!!!进入非训练模式(测试模式)
# 本轮正确率记录
train_acc = list()
test_acc = list()
long_acc = list()
length = 20
# 本轮损失值记录
train_loss = 0
test_loss = 0
long_loss=0
for i, batch in enumerate(train):
x, y = batch # 取一个batch
y=y.cuda()
pred = model(x).cuda() # 计算输出
loss = loss_fun(pred, y).cuda() # 损失值计算
train_loss += loss.item() # 损失值累加
_, y_pre = torch.max(pred, -1)
# 计算本batch准确率
acc = torch.mean((torch.tensor(y_pre == y, dtype=torch.float)))
train_acc.append(acc)
for i, batch in enumerate(test):
x, y = batch # 取一个batch
y=y.cuda()
pred = model(x).cuda() # 计算输出
loss = loss_fun(pred, y).cuda() # 损失值计算
test_loss += loss.item() # 损失值累加
_, y_pre = torch.max(pred, -1)
# 计算本batch准确率
acc = torch.mean((torch.tensor(y_pre == y, dtype=torch.float)))
test_acc.append(acc)
if(len(x[0]))>length: # 长句子侦测
long_acc.append(acc)
long_loss+=loss.item()
trains_acc = sum(train_acc) / len(train_acc)
tests_acc = sum(test_acc) / len(test_acc)
longs_acc = sum(long_acc) / len(long_acc)
train_loss_record.append(train_loss / len(train_acc))
test_loss_record.append(test_loss / len(test_acc))
long_loss_record.append(long_loss/len(long_acc))
train_record.append(trains_acc.cpu())
test_record.append(tests_acc.cpu())
long_record.append(longs_acc.cpu())
print("---------- Iteration", iteration + 1, "----------")
print("Train loss:", train_loss/ len(train_acc))
print("Test loss:", test_loss/ len(test_acc))
print("Train accuracy:", trains_acc)
print("Test accuracy:", tests_acc)
print("Long sentence accuracy:", longs_acc)
return train_loss_record,test_loss_record,long_loss_record,train_record,test_record,long_record
def NN_embedding_plot(random_embedding,glove_embedding,learning_rate, batch_size, iter_times):
# 获得训练集和测试集的batch
train_random = get_batch(random_embedding.train_matrix,
random_embedding.train_y, batch_size)
test_random = get_batch(random_embedding.test_matrix,
random_embedding.test_y, batch_size)
train_glove = get_batch(glove_embedding.train_matrix,
glove_embedding.train_y, batch_size)
test_glove = get_batch(random_embedding.test_matrix,
glove_embedding.test_y, batch_size)
# 模型建立
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
random_rnn = MY_RNN(50, 50, random_embedding.len_words)
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
random_cnn = MY_CNN(50, random_embedding.len_words, random_embedding.longest)
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
glove_rnn = MY_RNN(50, 50, glove_embedding.len_words, weight=torch.tensor(glove_embedding.embedding, dtype=torch.float))
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
glove_cnn = MY_CNN(50, glove_embedding.len_words, glove_embedding.longest,weight=torch.tensor(glove_embedding.embedding, dtype=torch.float))
# rnn+random
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
trl_ran_rnn,tel_ran_rnn,lol_ran_rnn,tra_ran_rnn,tes_ran_rnn,lon_ran_rnn=\
NN_embdding(random_rnn,train_random,test_random,learning_rate, iter_times)
# cnn+random
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
trl_ran_cnn,tel_ran_cnn,lol_ran_cnn, tra_ran_cnn, tes_ran_cnn, lon_ran_cnn = \
NN_embdding(random_cnn, train_random,test_random, learning_rate, iter_times)
# rnn+glove
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
trl_glo_rnn,tel_glo_rnn,lol_glo_rnn, tra_glo_rnn, tes_glo_rnn, lon_glo_rnn = \
NN_embdding(glove_rnn, train_glove,test_glove, learning_rate, iter_times)
# cnn+glove
torch.manual_seed(2021)
torch.cuda.manual_seed(2021)
trl_glo_cnn,tel_glo_cnn,lol_glo_cnn, tra_glo_cnn, tes_glo_cnn, lon_glo_cnn= \
NN_embdding(glove_cnn,train_glove,test_glove, learning_rate, iter_times)
# 画图部分
x=list(range(1,iter_times+1))
matplotlib.pyplot.subplot(2, 2, 1)
matplotlib.pyplot.plot(x, trl_ran_rnn, 'r--', label='RNN+random')
matplotlib.pyplot.plot(x, trl_ran_cnn, 'g--', label='CNN+random')
matplotlib.pyplot.plot(x, trl_glo_rnn, 'b--', label='RNN+glove')
matplotlib.pyplot.plot(x, trl_glo_cnn, 'y--', label='CNN+glove')
matplotlib.pyplot.legend()
matplotlib.pyplot.legend(fontsize=10)
matplotlib.pyplot.title("Train Loss")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.ylabel("Loss")
matplotlib.pyplot.subplot(2, 2, 2)
matplotlib.pyplot.plot(x, tel_ran_rnn, 'r--', label='RNN+random')
matplotlib.pyplot.plot(x, tel_ran_cnn, 'g--', label='CNN+random')
matplotlib.pyplot.plot(x, tel_glo_rnn, 'b--', label='RNN+glove')
matplotlib.pyplot.plot(x, tel_glo_cnn, 'y--', label='CNN+glove')
matplotlib.pyplot.legend()
matplotlib.pyplot.legend(fontsize=10)
matplotlib.pyplot.title("Test Loss")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.ylabel("Loss")
matplotlib.pyplot.subplot(2, 2, 3)
matplotlib.pyplot.plot(x, tra_ran_rnn, 'r--', label='RNN+random')
matplotlib.pyplot.plot(x, tra_ran_cnn, 'g--', label='CNN+random')
matplotlib.pyplot.plot(x, tra_glo_rnn, 'b--', label='RNN+glove')
matplotlib.pyplot.plot(x, tra_glo_cnn, 'y--', label='CNN+glove')
matplotlib.pyplot.legend()
matplotlib.pyplot.legend(fontsize=10)
matplotlib.pyplot.title("Train Accuracy")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.ylabel("Accuracy")
matplotlib.pyplot.ylim(0, 1)
matplotlib.pyplot.subplot(2, 2, 4)
matplotlib.pyplot.plot(x, tes_ran_rnn, 'r--', label='RNN+random')
matplotlib.pyplot.plot(x, tes_ran_cnn, 'g--', label='CNN+random')
matplotlib.pyplot.plot(x, tes_glo_rnn, 'b--', label='RNN+glove')
matplotlib.pyplot.plot(x, tes_glo_cnn, 'y--', label='CNN+glove')
matplotlib.pyplot.legend()
matplotlib.pyplot.legend(fontsize=10)
matplotlib.pyplot.title("Test Accuracy")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.ylabel("Accuracy")
matplotlib.pyplot.ylim(0, 1)
matplotlib.pyplot.tight_layout()
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(8, 8, forward=True)
matplotlib.pyplot.savefig('main_plot.jpg')
matplotlib.pyplot.show()
matplotlib.pyplot.subplot(2, 1, 1)
matplotlib.pyplot.plot(x, lon_ran_rnn, 'r--', label='RNN+random')
matplotlib.pyplot.plot(x, lon_ran_cnn, 'g--', label='CNN+random')
matplotlib.pyplot.plot(x, lon_glo_rnn, 'b--', label='RNN+glove')
matplotlib.pyplot.plot(x, lon_glo_cnn, 'y--', label='CNN+glove')
matplotlib.pyplot.legend()
matplotlib.pyplot.legend(fontsize=10)
matplotlib.pyplot.title("Long Sentence Accuracy")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.ylabel("Accuracy")
matplotlib.pyplot.ylim(0, 1)
matplotlib.pyplot.subplot(2, 1, 2)
matplotlib.pyplot.plot(x, lol_ran_rnn, 'r--', label='RNN+random')
matplotlib.pyplot.plot(x, lol_ran_cnn, 'g--', label='CNN+random')
matplotlib.pyplot.plot(x, lol_glo_rnn, 'b--', label='RNN+glove')
matplotlib.pyplot.plot(x, lol_glo_cnn, 'y--', label='CNN+glove')
matplotlib.pyplot.legend()
matplotlib.pyplot.legend(fontsize=10)
matplotlib.pyplot.title("Long Sentence Loss")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.ylabel("Loss")
matplotlib.pyplot.tight_layout()
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(8, 8, forward=True)
matplotlib.pyplot.savefig('sub_plot.jpg')
matplotlib.pyplot.show()