目标检测再升级!YOLOv8模型训练和部署

一个不知名大学生,江湖人称菜狗
original author: jacky Li
Email : [email protected]

Time of completion:2023.1.12
Last edited: 2023.1.12

目标检测再升级!YOLOv8模型训练和部署_第1张图片

 

目录

目标检测再升级!YOLOv8模型训练和部署

简介

YOLOv8创新改进点

区别

1、C2f模块是什么?与C3有什么区别?

损失函数

 样本的匹配

参考

作者有言


目标检测再升级!YOLOv8模型训练和部署

简介

YOLOv8 是 Ultralytics 开发的 YOLO(You Only Look Once)物体检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的SOTA模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

YOLOv8还有一个关键特性是它的可扩展性,由于其被设计成一个框架,支持所有以前YOLO的版本,使得在不同版本之间切换和比较它们的性能变得容易。

YOLOv8创新改进点

1.Backbone。使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

2.PAN-FPN。毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块

3.Decoupled-Head。是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

4.Anchor-Free。YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

5.损失函数。YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

6.样本匹配。YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

目标检测再升级!YOLOv8模型训练和部署_第2张图片

区别

1、C2f模块是什么?与C3有什么区别?

我们不着急,先看一下C3模块的结构图,然后再对比与C2f的具体的区别。针对C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,也就是所谓的残差模块。同时堆叠的个数由参数n来进行控制,也就是说不同规模的模型,n的值是有变化的。

目标检测再升级!YOLOv8模型训练和部署_第3张图片

其实这里的梯度流主分支,可以是任何之前你学习过的模块,比如,美团提出的YOLOv6中就是用来重参模块RepVGGBlock来替换BottleNeck Block来作为主要的梯度流分支,而百度提出的PP-YOLOE则是使用了RepResNet-Block来替换BottleNeck Block来作为主要的梯度流分支。而YOLOv7则是使用了ELAN Block来替换BottleNeck Block来作为主要的梯度流分支。

损失函数

对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。

VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。

q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。

针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。

目标检测再升级!YOLOv8模型训练和部署_第4张图片

DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;

DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。

 样本的匹配

标签分配是目标检测非常重要的一环,在YOLOv5的早期版本中使用了MaxIOU作为标签分配方法。然而,在实践中发现直接使用边长比也可以达到一阿姨你的效果。而YOLOv8则是抛弃了Anchor-Base方法使用Anchor-Free方法,找到了一个替代边长比例的匹配方法,TaskAligned。

为与NMS搭配,训练样例的Anchor分配需要满足以下两个规则:

  1. 正常对齐的Anchor应当可以预测高分类得分,同时具有精确定位;

  2. 不对齐的Anchor应当具有低分类得分,并在NMS阶段被抑制。基于上述两个目标,TaskAligned设计了一个新的Anchor alignment metric 来在Anchor level 衡量Task-Alignment的水平。并且,Alignment metric 被集成在了 sample 分配和 loss function里来动态的优化每个 Anchor 的预测。

参考

[1].https://github.com/uyolo1314/ultralytics.
[2].https://github.com/meituan/YOLOv6.
[3].https://arxiv.org/abs/2209.02976.
[4].https://github.com/PaddlePaddle/PaddleDetection.
[5].https://github.com/PaddlePaddle/PaddleYOLO.
[6].https://github.com/open-mmlab/mmyolo.

作者有言

如果需要该框架的训练部署地址,请给博主点一下关注把!!!链接放下面了,需要的自取 GitHub - DataXujing/YOLOv8: Official YOLOv8模型训练和部署:fire: Official YOLOv8模型训练和部署. Contribute to DataXujing/YOLOv8 development by creating an account on GitHub.https://github.com/DataXujing/YOLOv8
如果感觉博主讲的对您有用,请点个关注支持一下吧,将会对此类问题持续更新……

你可能感兴趣的:(有关深度学习遇见的错误常见,目标检测,深度学习,计算机视觉,yolo8)