这种错误主要是因为输入x和输出y(或模型参数)存放的位置不同所产生的
如果你是错误1: 输入x在cuda(gpu)中, 模型参数在cpu中
想把输入x放入到gpu中,一般就是找到输入参数x,然后再调用使用参数x之前添加一行代码x.to(device)
(其中device=“cuda”)
如果你是错误2: 输入x在cpu中, 模型参数cuda(gpu)在中
找到定义model的代码,在定义的后面添加一行代码 model.to(device)
具体操作如下:
测试代码demo: :
此时输入x在gpu, 但是model存放在cpu中 所以运行如下代码会报错误1
import torch
import torch.nn as nn
from torch.nn import LSTM
device = "cuda" if torch.cuda.is_available() else "cpu" # 有gpu用gpu, 没有就用cpu
x = torch.Tensor([[1,2,3], [2,3,4]]) # x shape (2,3) (seq_len, 词向量维度)
class Testmodel(nn.Module):
def __init__(self, input_dim, lstm_layer, lstm_hidden_dim, dropout):
super(Testmodel, self).__init__()
self.lstm_encoding = LSTM(input_dim, num_layers=lstm_layer, hidden_size=lstm_hidden_dim,
dropout=0.5) #
def forward(self, x: torch.Tensor):
output, (hn, cn) = self.lstm_encoding(x)
return output
model = Testmodel(
input_dim=3,
lstm_layer=2,
lstm_hidden_dim=4,
dropout=0.5,
)
# 此时输入x在gpu, 但是model存放在cpu中 所以会报错
x = x.to(device) # 将x放入到gpu内存中
output = model(x) # 调用forward方法 x (2,3) lstm 输入维度3, 输出维度4,
print(output) # output shape (2,4)
x = x.to(device) # 将x放入到gpu内存中
model.to(device)
,将模型的参数放入到gpu中,和输入x位置保持一致,改完后案例代码如下import torch
import torch.nn as nn
from torch.nn import LSTM
device = "cuda" if torch.cuda.is_available() else "cpu" # 有gpu用gpu, 没有就用cpu
x = torch.Tensor([[1,2,3], [2,3,4]]) # x shape (2,3) (seq_len, 词向量维度)
class Testmodel(nn.Module):
def __init__(self, input_dim, lstm_layer, lstm_hidden_dim, dropout):
super(Testmodel, self).__init__()
self.lstm_encoding = LSTM(input_dim, num_layers=lstm_layer, hidden_size=lstm_hidden_dim,
dropout=0.5) #
def forward(self, x: torch.Tensor):
output, (hn, cn) = self.lstm_encoding(x)
return output
model = Testmodel(
input_dim=3,
lstm_layer=2,
lstm_hidden_dim=4,
dropout=0.5,
)
model.to(device) # !!!!!!!!!!!!新添加的代码在这里
# 此时输入x在gpu, 但是model在gpu中 错误解决!!!!!
x = x.to(device) # 将x放入到gpu内存中
output = model(x) # 调用forward方法 x (2,3) lstm 输入维度3, 输出维度4,
print(output) # output shape (2,4)
测试代码demo:
此时输入x在cpu, 但是model存放在gpu中 所以运行如下代码会报错误2
import torch
import torch.nn as nn
from torch.nn import LSTM
device = "cuda" if torch.cuda.is_available() else "cpu" # 有gpu用gpu, 没有就用cpu
x = torch.Tensor([[1,2,3], [2,3,4]]) # x shape (2,3) (seq_len, 词向量维度)
class Testmodel(nn.Module):
def __init__(self, input_dim, lstm_layer, lstm_hidden_dim, dropout):
super(Testmodel, self).__init__()
self.lstm_encoding = LSTM(input_dim, num_layers=lstm_layer, hidden_size=lstm_hidden_dim,
dropout=0.5) #
def forward(self, x: torch.Tensor):
output, (hn, cn) = self.lstm_encoding(x)
return output
model = Testmodel(
input_dim=3,
lstm_layer=2,
lstm_hidden_dim=4,
dropout=0.5,
)
model.to(device) # 将模型参数放到gpu中
# 此时输入x在cpu, 但是model参数在gpu中 所以会报错
output = model(x) # 调用forward方法 x (2,3) lstm 输入维度3, 输出维度4,
print(output) # output shape (2,4)
model.to(device)
直接注释, 将模型参数放入到cpu内存中和输入x位置保持一致model.to(device) # 将模型参数放到gpu中
x = x.to(device)
,将模型的参数放入到gpu中,和输入x位置保持一致,改完后案例代码如下import torch
import torch.nn as nn
from torch.nn import LSTM
device = "cuda" if torch.cuda.is_available() else "cpu" # 有gpu用gpu, 没有就用cpu
x = torch.Tensor([[1,2,3], [2,3,4]]) # x shape (2,3) (seq_len, 词向量维度)
class Testmodel(nn.Module):
def __init__(self, input_dim, lstm_layer, lstm_hidden_dim, dropout):
super(Testmodel, self).__init__()
self.lstm_encoding = LSTM(input_dim, num_layers=lstm_layer, hidden_size=lstm_hidden_dim,
dropout=0.5) #
def forward(self, x: torch.Tensor):
output, (hn, cn) = self.lstm_encoding(x)
return output
model = Testmodel(
input_dim=3,
lstm_layer=2,
lstm_hidden_dim=4,
dropout=0.5,
)
model.to(device) # 将模型参数放入到gpu内存中
# 此时输入x在gpu, 同时model参数也在gpu中 不会报错
x = x.to(device) # !!!!!!!!!!!!新添加的代码在这里
output = model(x) # 调用forward方法 x (2,3) lstm 输入维度3, 输出维度4,
print(output) # output shape (2,4)
本人水平有限, 如有错误欢迎指正交流