- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- 马尔可夫决策过程(Markov decision process,MDP)
太阳城S
学习笔记马尔可夫决策过程MDP机器学习深度学习
文章目录马尔可夫决策过程(MDP)在机器学习中应用在机器学习中的引用示例引用:实例场景:机器人导航MDP的定义:引用示例:在此基础上更具体的描述,并给出每一步的推断计算过程场景描述:3x3网格中的机器人导航MDP的定义强化学习算法:Q-Learning具体实例与推断计算过程回合1(Episode1Episode1Episode1)回合2(Episode2Episode2Episode2)回合3(E
- Streamline Complex Decision Making with AI
SEO-狼术
DelphinetCrack开发语言
StreamlineComplexDecisionMakingwithAILogicGemhelpsdevelopersandanalyststocollaborateoncraftingclear,consistentbusinessrulesusingdecisiontablemethodology.LogicGemisaWindowsapplicationdesignedtoempowerb
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- Business Decision Analytics under Uncertainty
areyousure7
数据库前端
BusinessDecisionAnalyticsunderUncertaintyAssignment1Pleaseshowyourentireworkwithbrief,butsufficientlydetailedexplanationinaWorddocument.Startyouranswerbytypingyourname,RUIDandemailaddress.Youcanrefert
- GBDT--梯度提升树
吓得我泰勒都展开了
机器学习决策树算法
目录一梯度提升树的基本思想1梯度提升树pkAdaBoost2GradientBoosting回归与分类的实现二梯度提升树的参数1迭代过程1.1初始预测结果0的设置1.2使用回归器完成分类任务1.3GBDT的8种损失函数2弱评估器结构2.1梯度提升树种的弱评估器复杂度2.2弗里德曼均方误差3梯度提升树的提前停止机制4梯度提升树的袋外数据5缺失参数class_weight与n_jobs三梯度提升树的参
- 集成学习——梯度提升树(GBDT)
wxw_csdn
机器学习集成学习GBDT梯度提升树sklearn
集成学习——梯度提升树(GBDT)1模型算法介绍2sklearn中的实现3参考资料1模型算法介绍GBDT也是集成学习Boosting家族的成员,通过采用加法模型,不断减小训练过程中产生的残差算法。即通过多轮迭代,每轮迭代生成一个弱分类器,并在上一轮分类器残差的基础上进行训练,但是弱学习器限定了只能使用CART回归树模型,且迭代思路与Adaboost(利用前一轮迭代弱学习器的误差率来更新训练集的权重
- 学习笔记 ——GBDT(梯度提升决策树)
dastu
数据挖掘机器学习数据挖掘
一.前言GBDT(GradientBoostingDecisionTree)梯度提升决策树,通过多轮迭代生成若干个弱分类器,每个分类器的生成是基于上一轮分类结果来进行训练的。GBDT使用的也是前向分布算法,这一点和Adaboost类似,但不同的是,GBDT的弱分类器一般为Cart回归树(Adaboost一般不做限制)。这里之所以用回归树的原因是GBDT是利用残差逼近,是累加选择,这就和回归输出的连
- datawhale 10月学习——树模型与集成学习:梯度提升树
SheltonXiao
学习集成学习机器学习决策树
前情回顾决策树CART树的实现集成模式两种并行集成的树模型AdaBoost结论速递本次学习了GBDT,首先了解了用于回归的GBDT,将损失使用梯度下降法进行减小;用于分类的GBDT要稍微复杂一些,需要对分类损失进行定义。学习了助教提供的代码。目录前情回顾结论速递1用于回归的GBDT1.1原理1.2代码实现2用于分类的GBDT2.1原理2.2代码实现1用于回归的GBDT1.1原理与AdaBoost类
- 梯度提升树系列8——GBDT与其他集成学习方法的比较
theskylife
数据挖掘集成学习机器学习人工智能数据挖掘
目录写在开头1.主要集成学习算法对比1.1GBDT1.2随机森林1.3AdaBoost1.4整体对比2.算法性能的比较分析2.1准确率与性能2.2训练时间和模型复杂度2.3应用实例和案例研究3.选择合适算法的标准3.1数据集的特性3.1.1数据规模与维度3.1.2数据质量3.2性能需求3.2.1准确性3.2.2泛化能力3.3训练效率与资源3.3.1训练时间3.3.2计算资源3.4易用性与调参3.4
- 机器学习的几种基本算法
陌上尘飞123
决策树:曾经最流行的分类算法在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一中映射关系。http://thegrimmscientist.com/tutorial-decision-trees/K-均值聚类:一中非常简单
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- AdaBoost 算法
Rnan-prince
机器学习算法Adaboost机器学习
AdaBoost算法是一种经典的集成学习算法,它将多个弱分类器集成起来,以达到较高的分类准确率,广泛应用于数据分类、人脸检测等应用中。尤其在人脸检测方面,AdaBoost是非常经典、成功的一个算法。弱分类器被线性组合成为一个强分类器。一、面临两个问题:在每一轮,如何改变训练数据的概率分布或者权值分布。如何将弱分类器组合成强分类器。二、AdaBoost的思路:提高那些被前一轮弱分类器错误分类样本的权
- AdaBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法机器学习人工智能
Boosting是一种集成学习方法,AdaBoost是Boosting算法中的一种具体实现。Boosting方法的核心思想在于将多个弱分类器组合成一个强分类器。这些弱分类器通常是简单的模型,比如决策树,它们在训练过程中的错误会被后续的弱分类器所修正。Boosting算法通过逐步增加新的弱分类器来提高整体模型的性能,每个新的弱分类器都专注于之前模型分类错误的样本。AdaBoost(AdaptiveB
- 推荐收藏 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
Pysamlam
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划分属性信息增益的计算是基于信息熵(度量样本集合纯
- 5000字干货 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
数据不吹牛
算法决策树信息熵大数据机器学习
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124大家好,我是小z今天分享一波机器学习的干货~一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行输的分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划
- Bagging的随机森林;Boosting的AdaBoost和GBDT
S1406793
数据分析面试机器学习随机森林boosting算法
集成学习应用实践importnumpyasnpimportos%matplotlibinlineimportmatplotlibimportmatplotlib.pyplotaspltplt.rcParams['axes.labelsize']=14plt.rcParams['xtick.labelsize']=12plt.rcParams['ytick.labelsize']=12importw
- 机器学习(machine learning)大合集
AI信仰者
1、线性分类器怎么理解呢?我们可以把此分类器理解为线性空间的划分,最简单的,在二维空间上,通过直线的划分。第二个理解可以理解为模板匹配,W的每一行可以看做是其中一个类别的模板。每类得分,实际上是像素点和模板匹配度。模板匹配的方式是内积计算。2、机器学习实战之AdaBoost算法boosting算法系列的基本思想,如下图:adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基
- 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
机器学习之心
时序预测RF-Adaboost随机森林多变量时间序列预测
多维时序|Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测目录多维时序|Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测预测效果基本介绍程序设计参考资料预测效果基本介绍1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)RF-AdaBoost是一种将RF和AdaBoost两
- Sklearn之StandardScaler(数据预处理)
爱睡觉的琪
sklearn机器学习python
1.哪些机器学习算法不需要(需要)做归一化?概率模型(树形模型)不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、RF、XGboost。而像Adaboost、SVM、LR、Knn、KMeans之类的最优化问题就需要归一化。2.StandardScaler原理作用:使得经过处理的数据符合标准正态分布,即均值为0,标准差为1。且是针对每一个特征维度来做的,而不是针
- 时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测
机器学习之心
时序预测CNN-LSTM-AdaCNN-LSTMAdaBoost卷积长短期记忆网络时间序列预测
时序预测|MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测目录时序预测|MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果基本介绍1.MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测(风
- 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测
机器学习之心
时序预测CNN-GRU-AdaCNN-GRUAdaBoost卷积门控循环单元时间序列预测
时序预测|MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测目录时序预测|MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果基本介绍1.MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测(风电功率预测)
- (6)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—使用Adaboost建模及工作环境下的数据分析整理
代码骑士
#python机器学习深度学习
目录一、为什么要使用Adaboost建模?二、泰坦尼克号分析(工作环境)(插曲)Python可以引入任何图形及图形可视化工具三、数据分析四、模型建立1、RandomForestRegressor预测年龄2、LogisticRegression建模引入GridSearchCV引入RandomizedSearchCV3、DecisionTree建模4、RandomForest建模FeatureImpo
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS