- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 大模型在坏疽及穿孔性阑尾炎预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术概述2.1大模型原理与架构2.2医学领域相关应用案例三、坏疽及穿孔性阑尾炎的术前预测3.1危险因素分析3.2大模型预测模型构建3.3预测结果与临床评估四、基于预测的手术方案制定4.1手术方式选择依据4.2手术步骤与关键要点4.3案例分析五、麻醉方案确定5.1麻醉方式选择5.2麻醉药物使用5.3麻醉过程监测与管理六、术中情况监测与处
- WIND金融客户端Python接口文档:Python环境下的金融大数据利器
邴韵芯
WIND金融客户端Python接口文档:Python环境下的金融大数据利器【下载地址】WIND金融客户端Python接口文档WINDPY是WIND金融客户端为Python开发者提供的强大接口,支持在Python环境中便捷访问WIND金融数据库。它提供了丰富的函数和命令,涵盖历史数据、实时行情、交易操作等多种功能,适用于量化交易、数据分析等场景。无论是获取股票、基金、债券等金融产品的历史序列、分钟数
- 机器学习之常用的回归预测模型
曼城周杰伦
机器学习机器学习回归人工智能算法
本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型。转载自:https://mp.weixin.qq.com/s/7m2waIASOEg90NONgRpQFQ一.线性模型线性回归是一种线性模型,通过特征的线性组合来预测连续值标签。线性回归通过拟合系数(可选择是否设置截距)的线性模型,以最小化真实值和预测值之间的残差平方和。scikit-learnlinear_models:http
- [QMT量化交易小白入门]-六十六、加入评分阈值后,历史回测收益率达到74%
python自动化工具
量化交易小白入门数据库redis缓存
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。文章目录相关阅读系统的核心逻辑详细解析评分函数`calculate_etf_scores`技术指标计算函数定义2.5综合评分计算2.6负值过滤与评分数据记录评分数据转换为DataFrame数据归一
- LSTM价格预测模型:基于技术指标与市场情绪数据
pk_xz123456
仿真模型算法深度学习lstm人工智能rnn深度学习开发语言目标检测神经网络
LSTM价格预测模型:基于技术指标与市场情绪数据一、模型架构设计importnumpyasnpimportpandasaspdimporttensorflowastffromsklearn.preprocessingimportStandardScalerfromtensorflow.keras.modelsimportSequentialfrom
- 【MPC】模型预测控制笔记 (4):约束输出反馈MPC
车队老哥记录生活
模型预测控制MPC笔记算法
目录前言一、观测器设计二、输出反馈MPC设计2.1预测模型2.2代价函数设计2.3约束构建2.3.1系统约束2.3.2终端约束2.4构建二次规划求解三、系统稳定性分析3.1构造李雅普诺夫函数3.2证明李雅普诺夫函数递减四、MATLAB实例前言致谢【模型预测控制(2022春)lecture3-2OutputfeedbackMPC】本文需要是使用先前博客的知识,控制器求解参考【MPC】模型预测控制笔记
- 另类数据挖掘:如何用网络搜索数据预测上市公司业绩?
量化价值投资入门到精通
数据挖掘人工智能ai
另类数据挖掘:如何用网络搜索数据预测上市公司业绩?关键词:另类数据、网络搜索数据、业绩预测、文本挖掘、机器学习、量化投资、自然语言处理摘要:本文探讨了如何利用网络搜索数据这一另类数据源来预测上市公司业绩。我们将从理论基础出发,详细分析搜索数据与公司业绩之间的关联机制,介绍完整的数据采集、处理和分析流程,并通过实际案例展示如何构建预测模型。文章还将讨论该方法的局限性、实际应用场景以及未来发展方向,为
- 自适应限流算法实战
双囍菜菜
#Go高吞吐架构算法Golang
自适应限流算法实战文章目录自适应限流算法实战一、限流算法演进史:从静态到自适应1.1传统限流算法的致命缺陷1.2自适应限流的革命性突破二、自适应限流核心指标体系2.1黄金四维指标2.2指标融合公式三、经典自适应算法解析3.1TCPBBR带宽自适应算法核心限流应用3.2NetflixConcurrencyLimit梯度下降策略智能探针机制四、AI赋能的智能限流4.1LSTM预测模型架构4.2强化学习
- 美元反弹压制金价:基于ARIMA-GARCH模型的汇率-黄金联动效应解构
金融小师妹
人工智能大数据算法
摘要:本文采用LSTM-Attention混合模型进行价格序列特征提取,结合自然语言处理(NLP)构建政策不确定性指数(PUI),运用ARIMA-GARCH模型预测美元流动性溢价因子(DLP)变动。通过DSGE模型模拟贸易政策冲击传导路径,并基于Nelson-Siegel模型分解美债收益率曲线结构分析。现货黄金呈现典型的三阶段波动特征:首先在3392美元/盎司关键阻力位触发动量交易突破,随后因美元
- 从生存到生长:智能化转型中的“共生型企业家“进化论
开利网络
java大数据开发语言人工智能数据库
数字化生存:从利己博弈到利他共生当流量红利消退、供应链重构加速,企业正面临"前有狼、后有虎"的生死局。数字化不再是选择题,而是决定企业能否穿越周期的必答题——但90%的企业都走错了方向。转型密码,在于变革传统商业逻辑:用数字化手段把蛋糕做大,而非抢食存量。某制造企业开放供应链数据中台,让上下游中小厂商共享产能预测模型,看似"自断财路",实则带动产业链整体效率提升30%,企业自身也收获25%的生态增
- AI 气象数据处理与预测模型优化实践
2501_92488041
人工智能
随着科技的飞速发展,人工智能(AI)在气象数据处理与预测模型优化领域的应用日益广泛,为提高气象预报准确性和效率提供了新的可能。本文将从AI在气象数据处理和预测模型优化中的实际应用出发,详细阐述其优势、挑战及未来发展方向。一、AI在气象数据处理中的应用1.数据清洗与预处理气象数据通常包含大量噪声、缺失值和不一致性,这对模型的训练和预测结果产生影响。AI技术在数据清洗与预处理方面表现出色,以下是两个具
- 基于大模型的尿毒症预测及综合治疗方案技术方案
LCG元
大模型医疗研究-技术方向技术方案机器学习深度学习人工智能
目录一、算法实现伪代码1.尿毒症风险预测模型(基于多模态融合Transformer)2.动态治疗方案生成算法二、系统模块流程图1.尿毒症智能预测系统流程2.治疗方案生成子系统流程三、系统集成方案1.系统架构设计2.数据流说明四、系统部署拓扑图1.生产环境拓扑2.高可用设计要点五、关键技术指标一、算法实现伪代码1.尿毒症风险预测模型(基于多模态融合Transformer)#数据预处理模块defpre
- 2024 年 MathorCup 数学应用挑战赛——大数据竞赛 赛道 A:台风的分类与预测 思路和代码(后期会给出详细代码)
YOLO实战营
大数据分类机器学习MathorCup2024
问题1:台风分类模型问题2:台风路径预测模型问题3:台风登陆后降水量与风速关系模型总结该题目分为三个主要问题,分别要求构建台风的分类模型、路径预测模型和降水风速模型。为了完成此任务,我们将运用大数据分析和机器学习建模技术,并使用Python处理和分析数据。以下是各问题的详细思路和代码框架。问题1:台风分类模型数据预处理:使用历史台风数据和气象数据(如气温、气压、季风数据),构建包含台风的强度、等级
- 解密监督学习:带你玩转预测未来的魔术 (代码驱动)
小吉择
学习
你好,未来的数据魔法师!你是否曾对机器如何看懂图片、预测股价、甚至诊断疾病感到好奇?这一切的背后,很多时候都离不开机器学习中的一个核心分支——监督学习(SupervisedLearning)。今天,我们将一起揭开它的神秘面纱,并通过大量代码实例,让你亲手体验构建预测模型的乐趣!什么是监督学习?一切从“标签”开始想象一下,你正在教一个孩子看图识字。你会给他看一张苹果的图片,并告诉他:“这是苹果”。然
- 从理论到实践:情感分析如何提升量化价值投资收益率?
量化价值投资入门到精通
ai
从理论到实践:情感分析如何提升量化价值投资收益率?关键词:情感分析、量化价值投资、自然语言处理、投资组合优化、收益率提升、金融文本分析、量化策略摘要:本文系统解析情感分析技术在量化价值投资中的理论基础与实践路径。首先构建情感分析与价值投资的理论关联模型,揭示金融文本情感数据对资产定价的影响机制。其次通过数学建模和算法实现,演示如何将情感得分嵌入经典量化模型(如CAPM、Black-Litterma
- python简单的预测模型_python简单预测模型
HOWARD ZHOU
python简单的预测模型
python简单预测模型步骤1:导入所需的库,读取测试和训练数据集。#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数importpandasaspdimportnumpyasnpfromsklearn.preprocessingimportLabelEncoderim
- 如何开通自己想要的算法?
韭菜修养
区块链大数据
首先作为散户,我们应该清楚,我们为什么要开通算法交易,开通算法交易的好处是什么?开通算法交易的理由有三:一:降低交易费用大单指令通常被拆分为若干个小单指令渐次进入市场。这个策略的成功程度可以通过比较同一时期的平均购买价格与成交量加权平均价来衡量。二:是套利典型的套利策略通常包含三四个金融资产,如根据外汇市场利率平价理论,国内债券的价格、以外币标价的债券价格、汇率现货及汇率远期合约价格之间将产生一定
- 常用交易所链接
兮动人
实用工具区块链java
交易所上海证券交易所深圳证券交易所中国证券登记结算有限公司上海期货交易所上海黄金交易所中国金融期货交易所大连商品交易所郑州商品交易所郑州商品交易所期权网上证债券信息网中国债券信息网-中央结算公司中国货币网-中国外汇交易中心主办上海清算所中国证券监督管理委员会中国银行业监督管理委员会中国证券金融股份有限公司中国期货市场监控中心全国社会保障基金理事会上海金融期货信息技术有限公司全国中小企业股份转让系统
- Agentic AI 深度解析:从零构建自主智能体系统的完整指南
legendddh
人工智能
引言:AI的第三次飞跃——AgenticIntelligence随着人工智能的发展步入以大语言模型(LLMs)和多模态系统为核心的新阶段,业界已经不再满足于单点任务处理。相反,更加强大且高度自主的系统逐渐成为主流方向——这便是AgenticAI(代理型智能)的舞台。AgenticAI不只是一个技术趋势,它是AI从“工具”向“助手”进化的关键标志。相比传统的Chatbot、预测模型或分类器,Agen
- 【python机器学习】——线性回归算法
爱读书的无业游民
【python机器学习】机器学习算法python线性回归
线性回归线性回归基本概念线性回归是一种预测模型,它用于分析两个或多个变量之间的关系。在简单的线性回归中,我们通常有一个目标变量(称为响应变量或因变量)和一个或多个预测变量(称为解释变量或自变量)。目标是找到一条直线(在多元情况下是超平面),使得这条直线尽可能地拟合数据点,即最小化预测值和实际值之间的差异。线性回归的基本原理是通过最小化误差平方和来寻找最佳拟合直线。误差平方和是每个数据点到直线的距离
- 使用大模型预测短暂性脑缺血发作(TIA)的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能深度学习机器学习方案大纲
目录一、系统概述1.1方案背景1.2方案目标1.3方案范围二、术前预测方案2.1数据收集与整合2.2模型构建与训练2.3手术方案生成三、术中决策方案3.1实时数据监测3.2大模型实时风险预警3.3麻醉方案动态调整四、术后风险预测与护理方案4.1术后并发症预测4.2个性化护理方案4.3出院风险评估与随访计划五、并发症风险预测方案5.1风险因素分析5.2预测模型构建5.3预测结果应用六、技术验证方法6
- 基于大模型预测的视神经脊髓炎技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言(一)研究背景(二)研究目的与意义(三)大模型在医疗领域的应用现状二、术前评估与预测(一)数据采集与预处理(二)大模型构建与训练(三)术前风险评估与预测三、术中监测与决策支持(一)实时数据采集与传输(二)术中决策支持系统四、术后管理与康复(一)术后早期预警与监测(二)康复效果预测与个性化康复方案制定五、并发症风险预测与防控(一)并发症类型与风险因素分析(二)并发症风险预测模型构建与验证
- 基于大模型的脑出血全流程预测系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、系统概述三、系统架构(一)数据采集与预处理层(二)模型训练与优化层(三)预测与决策支持层(四)数据管理与分析层(五)用户交互与应用层四、术前预测(一)数据采集(二)数据预处理(三)脑出血风险预测模型(四)手术方案制定(五)麻醉方案推荐五、术中监测与决策(一)数据采集(二)数据预处理(三)实时病情监测模型(四)手术策略调整建议六、术后护理与康复(一)数据采集(二)数据预处理(三)并发
- 10、 动态学习调度算法与多层感知器模型用于心脏病预测系统
丛越
动态学习调度算法DLSA多层感知器
动态学习调度算法与多层感知器模型用于心脏病预测系统1.引言心脏病是全球公共卫生的重大挑战,每年导致数百万人死亡。为了应对这一问题,研究人员一直在寻找更有效的预测方法,以实现早期检测和预防。数据挖掘和机器学习技术为心脏病预测提供了新的可能性。通过利用大规模和多样化的数据集,研究人员可以开发出更加准确和可靠的预测模型。本文将详细介绍动态学习调度算法(DynamicLearningSchedulingA
- 可转债基金波动大不大?牛市熊市中的表现对比
可转债基金波动大不大?牛市熊市中的表现对比可转债基金的本质可转债基金主要投资可转换债券,也就是那种能“变脸”的债券——行情好可以转成股票赚差价,行情差就老实当债券吃利息。这种特性让它比纯债基金更刺激,但比股票基金稳一点。举个栗子,某可转债基金持仓里可能有宁德时代、茅台这类公司的可转债,牛市跟着股票涨,熊市有债底托着,属于“进可攻退可守”的品种。波动性到底大不大?短期看,波动不小。可转债价格受正股影
- 【金融财经】金融市场一周简报(2017-08-25)
JDJRdata
金融科技投资市场金融一周
全球市场概览本周国内A股市场上证指数(000001)上涨1.92%,收于3331.52点,深证成指(399001)上涨0.42%,收于10659.01点,创业板指(399006)下跌0.49%,收于1812.88点。国内债券市场1年期国债利率为3.33%,较上期上浮1个基点,3年期国债利率为3.46%,较上期上浮23个基点,10年期国债利率为3.59%,较上期上浮7个基点。国内货币市场银行间隔夜拆
- Python, C ++开发出版物销量排行APP
Geeker-2025
pythonc++
以下是针对出版物销排行APP的开发方案,结合Python的数据智能与C++的高性能特性,构建实时、精准的图书销售分析平台:---一、系统架构设计1.技术栈分层模块Python应用场景C++应用场景核心算法引擎销售预测模型(Prophet/LSTM)实时排名计算(跳表+SIMD)数据采集与清洗网络爬虫(Scrapy)高频API请求处理(cpphttplib)业务逻辑层FastAPI(RESTfulA
- 宏观交通流仿真软件:TransCAD_(3).交通需求预测基础理论
kkchenjj
交通物流仿真数据库交通物流仿真服务器
交通需求预测基础理论1.交通需求预测的概念和重要性交通需求预测是城市交通规划和管理中的一项重要任务,旨在通过科学的方法预测未来某个时间段内的交通需求量。这些预测结果对于交通设施的规划、设计、运营和管理具有重要意义。交通需求预测通常涉及以下几个步骤:数据收集:收集必要的交通数据,包括人口、就业、土地使用、交通网络等。模型构建:根据收集的数据构建交通需求预测模型。模型校准:通过历史数据校准模型,以提高
- 空气质量预测 | Python实现基于线性回归、Lasso回归、岭回归、决策树回归的空气质量预测模型
天天酷科研
空气质量预测(AQP)回归python线性回归
文章目录效果一览文章概述源码设计参考资料效果一览文章概述政府机构使用空气质量指数(AQI)向公众传达当前空气污染程度或预测空气污染程度。随着AQI的上升,公共卫生风险也会增加。不同国家有自己的空气质量指数,对应不同国家的空气质量标准。对于空气质量预测,我们将使用4种算法:1.线性回归2.Lasso回归3.岭回归4.决策树回归通过使用上述算法,我们将通过提供训练数据来训练我们的模型,一旦模型被训练,
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><