神经网络最擅长处理,神经网络训练算法

神经网络最擅长处理,神经网络训练算法_第1张图片

1、为什么要用GPU来训练神经网络而不是CPU?

许多现代神经网络的实现基于GPU,GPU最初是为图形应用而开发的专用硬件组件。所以神经网络收益于游戏产业的发展。

中央处理器(central processing unit,简称CPU)作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。CPU自产生以来,在逻辑结构、运行效率以及功能外延上取得了巨大发展。

CPU出现于大规模集成电路时代,处理器架构设计的迭代更新以及集成电路工艺的不断提升促使其不断发展完善。从最初专用于数学计算到广泛应用于通用计算。

从4位到8位、16位、32位处理器,最后到64位处理器,从各厂商互不兼容到不同指令集架构规范的出现,CPU 自诞生以来一直在飞速发展。

冯诺依曼体系结构是现代计算机的基础。在该体系结构下,程序和数据统一存储,指令和数据需要从同一存储空间存取,经由同一总线传输,无法重叠执行。根据冯诺依曼体系,CPU的工作分为以下 5 个阶段:取指令阶段、指令译码阶段、执行指令阶段、访存取数和结果写回。

谷歌人工智能写作项目:小发猫

2、深度学习用cpu训练和用gpu训练有什么区别

1、深度学习用cpu训练和用gpu训练的区别

(1)CPU主要用于串行运算;而GPU则是大规模并行运算神经网络处理器训练。由于深度学习中样本量巨大,参数量也很大,所以GPU的作用就是加速网络运算。

(2)CPU算神经网络也是可以的,算出来的神经网络放到实际应用中效果也很好,只不过速度会很慢罢了。而目前GPU运算主要集中在矩阵乘法和卷积上,其他的逻辑运算速度并没有CPU快。

2、深度学习

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。

使用神经网络训练,一个最大的问题就是训练速度的问题,特别是对于深度学习而言,过多的参数会消耗很多的时间,在神经网络训练过程中,运算最多的是关于矩阵的运算,这个时候就正好用到了GPU,GPU本来是用来处理图形的,但是因为其处理矩阵计算的高效性就运用到了深度学习之中。

3、Hopfield 神经网络有哪几种训练方法

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:
(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。
(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

4、谷歌发布tpu研究论文,神经网络专用处理器是怎样炼成的

TPU 的需求大约真正出现在 6 年之前,那时我们在所有产品之中越来越多的地方已开始使用消耗大量计算资源的深度学习模型;昂贵的计算令人担忧。假如存在这样一个场景,其中人们在 1 天中使用谷歌语音进行 3 分钟搜索,并且我们要在正使用的处理器中为语音识别系统运行深度神经网络,那么我们就不得不翻倍谷歌数据中心的数量。
TPU 将使我们快速做出预测,并使产品迅速对用户需求做出回应。TPU 运行在每一次的搜索中;TPU 支持作为谷歌图像搜索(Google Image Search)、谷歌照片(Google Photo)和谷歌云视觉 API(Google Cloud Vision API)等产品的基础的精确视觉模型;TPU 将加强谷歌翻译去年推出的突破性神经翻译质量的提升;并在谷歌 DeepMind AlphaGo 对李世乭的胜利中发挥了作用,这是计算机首次在古老的围棋比赛中战胜世界冠军。
我们致力于打造最好的基础架构,并将其共享给所有人。我们期望在未来的数周和数月内分享更多的更新。

5、MATLAB中BP神经网络的训练算法具体是怎么样的

先用newff函数建立网络,再用train函数训练即可。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
BP算法实现步骤(软件):
1)初始化
2)输入训练样本对,计算各层输出
3)计算网络输出误差
4)计算各层误差信号
5)调整各层权值
6)检查网络总误差是否达到精度要求
满足,则训练结束;不满足,则返回步骤2)
注:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子。

6、一般神经网络要训练多久

决定神经网络训练多久有很多因素,如用的是CPU还是GPU,神经网络的结点数、层数,学习速率,激活函数等。一般在测试集的准确率不再明显增加时就可以停止训练了。

你可能感兴趣的:(php,神经网络,算法,深度学习,tensorflow)