小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。
它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。 即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。
它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。
“小波神经网络”的应用:1、在影像处理方面,可以用于影像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高解析度等。2、在信号分析中的应用也十分广泛。
它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等。3、在工程技术等方面的应用。
包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面。扩展资料:小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。
其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。
小波神经网络具有以下特点:首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。
谷歌人工智能写作项目:神经网络伪原创
小波神经网络相比于前向的神经网络,它有明显的优点:首先小波神经网络的基元和整个结构是依据小波分析理论确定的,可以避免BP神经网络等结构设计上的盲目性;其次小波神经网络有更强的学习能力,精度更高写作猫。
总的而言,对同样的学习任务,小波神经网络结构更简单,收敛速度更快,精度更高。
MATLAB中文论坛2010年出过一本书,北航出版社的,叫《MATLAB神经网络30个案例分析(豆瓣)》。我觉得把它作为入门书挺好的,每一章配有视频和代码,可以依样画葫芦。
刚刚顺手还看到了另一本书《MATLAB智能算法30个案例分析》,看目录貌似内容也比较接近的。
《神经网络》包含的30个例子:P神经网络的数据分类——语音特征信号分类BP神经网络的非线性系统建模——非线性函数拟合遗传算法优化BP神经网络——非线性函数拟合神经网络遗传算法函数极值寻优——非线性函数极值寻优基于BP_Adaboost的强分类器设计——公司财务预警建模PID神经元网络解耦控制算法——多变量系统控制RBF网络的回归——非线性函数回归的实现GRNN的数据预测——基于广义回归神经网络的货运量预测离散Hopfield神经网络的联想记忆——数字识别离散Hopfield神经网络的分类——高校科研能力评价连续Hopfield神经网络的优化——旅行商问题优化计算SVM的数据分类预测——意大利葡萄酒种类识别SVM的参数优化——如何更好的提升分类器的性能SVM的回归预测分析——上证指数开盘指数预测SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测自组织竞争网络在模式分类中的应用——患者癌症发病预测SOM神经网络的数据分类——柴油机故障诊断Elman神经网络的数据预测——电力负荷预测模型研究概率神经网络的分类预测——基于PNN的变压器故障诊断神经网络变量筛选——基于BP的神经网络变量筛选LVQ神经网络的分类——乳腺肿瘤诊断LVQ神经网络的预测——人脸朝向识别小波神经网络的时间序列预测——短时交通流量预测模糊神经网络的预测算法——嘉陵江水质评价广义神经网络的聚类算法——网络入侵聚类粒子群优化算法的寻优算法——非线性函数极值寻优遗传算法优化计算——建模自变量降维基于灰色神经网络的预测算法研究——订单需求预测基于Kohonen网络的聚类算法——网络入侵聚类神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类。
确定隐层节点数的方法为“试凑法”。隐含神经元的数目是非常重要的,它的选取结果直接影响到网络的性能好坏。
如果隐含层的神经元数量太少,网络就不能够很好的学习,即便可以学习,需要训练的次数也非常多,训练的精度也不高。
当隐含层神经元的数目在一个合理的范围内时,增加神经元的个数可以提高网络训练的精度,还可能会降低训练的次数。
但是,当超过这一范围后,如果继续增加神经元的数量,网络训练的时间又会增加,甚至还有可能引起其它的问题。
那么,究竟要选择多少个隐含层神经元才合适呢?遗憾的是,至今为止还没有理论规定该如何来确定网络隐含层的数目。所以,只能用尝试的方法来寻找最适宜的隐含层神经元数目。
本文采取的做法是:构建多个BP网络,它们除了隐含层神经元个数不同外,其它一切条件都相同,通过比较它们训练的循环次数和网络精度,找到最佳的神经元个数。小波神经网络的隐层设计原则也遵循这个方法。
也有一些经验公式,可以作为参考。
将小波分析与神经网络的结合是小波神经网络,有两种结合方式,即辅助式结合和嵌套式结合。辅助式结合是将小波分析作为神经网络的前置预处理手段,为神经网络提供输入特征向量,然后再用传统的神经网络进行处理。
嵌套式结合使用小波函数代替神经网络的隐层函数。
将历史数据作为样本训练,最后用一组对应的样本作为输入,输出自然是未来数据。神经网络预测就是这么做的。对商品价格变动的分析,可归结为对影响市场供求关系的诸多因素的综合分析。
传统的统计经济学方法因其固有的局限性,难以对价格变动做出。