- 最小二乘法-线性回归 和 梯度下降法
梦回楼~
最小二乘法算法机器学习人工智能
最小二乘法一、最小二乘法概念以及应用 最小二乘法(LeastSquaresMethod,LSE)是一种数学优化技术,主要用于寻找最佳拟合给定数据点的函数。它通过最小化观测值与模型预测值之间的差的平方和来估计模型参数。 换成听得懂的话说就是,我们有一组数据(x1,y1),(x2,y2)…(xn,yn),我们也知道他的数学表达式的形式例如y=kx+b(但是不知道k、b的具体值),但是(xn,yn)
- 如何解决小尺寸图像分割中的样本不均衡问题
司南锤
深度学习遥感笔记深度学习
1.生成对抗数据增强(Copy-PasteAugmentation)原理:将稀有目标的像素块复制粘贴到其他图像中,低成本生成平衡数据。适用场景:小目标(如车辆、船只)或极端稀疏类别(如灾害损毁区域)。PyTorch实现:importrandomdefcopy_paste_augment(image,mask,paste_image,paste_mask):#从粘贴数据中随机选择一个目标实例obj_
- 从零推导线性回归:最小二乘法与梯度下降的数学原理
Echo-Nie
机器学习机器学习线性回归人工智能梯度下降数学推导
欢迎来到我的主页:【Echo-Nie】本篇文章收录于专栏【机器学习】本文所有内容相关代码都可在以下仓库中找到:Github-MachineLearning1线性回归1.1什么是线性回归线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直线(或者一个平面),让这条直线尽可能地“拟合”已有的数据点,通过这条直线,我们可以预测新的数据。eg:假设你想预测房价,你知道房子的大小(面积)
- Python中opencv的一些函数及应用
灵封~
pythonopencv开发语言
Sobel算子函数功能:Sobel算子用于计算图像的梯度(变化率),常用于边缘检测。它通过对图像应用一个基于一阶导数的滤波器来强调图像中的边缘部分,特别是水平和垂直方向上的边缘。通过计算图像的梯度,可以获得图像中亮度变化较大的地方,这些地方通常是物体的边界。Sobel算子有两个方向的变体:SobelX:计算水平方向的梯度。SobelY:计算垂直方向的梯度。Sobel算子函数:cv2.Sobel()
- Isaac Lab
独鹿
算法人工智能python开发语言机器人
一、安装isaacsimcondacreate-nisaaclabpython=3.10condaactivateisaaclabpipinstalltorch==2.2.2--index-urlhttps://download.pytorch.org/whl/cu121pipinstallisaacsim-rlisaacsim-replicatorisaacsim-extscache-physi
- OpenCV相关函数
〖是♂我〗
opencv计算机视觉图像处理
一、Sobel算子函数(cv2.Sobel)功能Sobel算子是一个梯度算子,用于边缘检测。通过计算图像中像素的梯度,Sobel算子可以检测出水平和垂直方向上的边缘。参数src:输入图像。ddepth:输出图像的深度(如cv2.CV_8U,cv2.CV_64F)。一般为cv2.CV_8U(8位无符号整数)或cv2.CV_64F(64位浮动数)。dx:计算导数的x方向阶数,dx=1表示计算x方向的导
- 使用 PyTorch 实现逻辑回归:从数据到模型保存与加载
弥树子
pytorch逻辑回归人工智能
在机器学习中,逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将通过一个简单的示例,展示如何使用PyTorch框架实现逻辑回归模型,从数据准备到模型训练、保存和加载,最后进行预测。1.数据准备逻辑回归的核心是通过学习数据中的特征与标签之间的关系来进行分类。在本示例中,我们手动创建了一个简单的二维数据集,包含两类数据点。第一类数据点的标签为0,第二类数据点的标签为1。class1_point
- [论文笔记] Megatron: mistral sliding window(ImportError: /workspace/venv/lib/python3.10/site-packag报错解决)
心心喵
论文笔记论文阅读
pyTorch—TransformerEngine1.2.1documentation论文:https://arxiv.org/pdf/2310.06825.pdftransformerengine的slidingwindow是用了flashatttention(新版本2以上,这里用的最新版本2.5.2)里对sliding_window的实现。所以不需要用transformerengine。直接用
- pytorch 手写数字识别
CrxzYia
深度学习pytorch机器学习
importnumpyasnpimporttorchimporttorch.nnasnnimporttorch.nn.functionalasFimportstructimporttorch.optimasoptimfromPILimportImagefrommatplotlibimportpyplotaspltclassNet(nn.Module):def__init__(self):super
- 深度学习探索:ChatGPT数据分析精髓 & 梯度下降优化方法深度剖析
网罗开发
AI大模型人工智能深度学习chatgpt数据分析
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- css粒子效果
HainesFreeman
css前端html
htmlcss:body{height:100vh;background:radial-gradient(ellipseatbottom,#1b27350%,#090a0f100%);overflow:hidden;filter:drop-shadow(0010pxwhite);}@functionrandom_range($min,$max){$rand:random();$random_ran
- 【JavaScript】forEach 遍历数组详解
Peter-Lu
#JavaScriptjavascript开发语言ecmascript前端
文章目录一、forEach方法概述1.forEach方法简介2.语法结构3.forEach方法的特性二、forEach方法的基本用法1.遍历数组元素2.使用索引3.访问原数组三、forEach方法的实际应用1.修改DOM元素2.累加数组元素3.异步操作四、forEach方法的优缺点1.优点2.缺点五、forEach与其他遍历方法的对比1.for循环2.map方法3.filter方法六、注意事项1.
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- 基于 PyTorch 的深度学习模型开发实战
一ge科研小菜鸡
人工智能深度学习
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域,凭借其强大的特征学习能力,成为人工智能的核心技术之一。PyTorch作为当前流行的深度学习框架,提供了灵活的张量操作和动态计算图,便于模型的快速开发和调试。本教程将通过一个完整的深度学习模型开发流程,从数据预处理、模型构建、训练与优化、评估以及部署,帮助读者深入理解深度学习的关键技术
- 使用 Pyro 和 PyTorch 的贝叶斯神经网络
无水先生
人工智能综合Pytorch和项目实践pytorch人工智能python
一、说明构建图像分类器已成为新的“helloworld”。还记得当你第一次接触Python时,你的打印“helloworld”感觉很神奇吗?几个月前,当我按照PyTorch官方教程并为自己构建了一个运行良好的简单分类器时,我也有同样的感觉。
- Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理
lichunericli
人工智能pytorchllama
原文地址:meta-llama-3-optimized-cpu-inference-with-hugging-face-and-pytorch了解在CPU上部署Meta*Llama3时如何减少模型延迟2024年4月19日万众期待的Meta第三代Llama发布了,我想确保你知道如何以最佳方式部署这个最先进的(SoTA)LLM。在本文中,我们将重点讨论如何执行只权重量化(WOQ)来压缩8B参数模型并改
- nvdia triton server运行pt文件
滑稽的柴犬
神经网络机器学习python
tritonserver默认都是tensorrt推理。但也会出现有操作不支持,导致无法转模型为engine的情况。可以选择直接运行pytorch的pt文件,以下为操作步骤。1.pytorch后端环境编译步骤原理是使用pytorchC++API运行pt文件模型。安装依赖项apt-getinstallpatchelfrapidjson-devpython3-dev构建NGC的PyTorch容器。例如,
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- kafka 生产者发送流程
jxj_cd
mysql数据库
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。kafka的基础架构:Kafka生产者发送流程详解:拦截器序列化器分区器生产者端由两个线程协调完成,分别是main线程和Sender线程。main线程在将消息通过拦截器、序列化器和分区器处理后缓存到消息累加器(Reco
- 【diffusers极速入门(六)】缓存梯度和自动放缩学习率以及代码详解
多恩Stone
AIGCDiffusion编程学习diffuserspytorchAIDeeplearningAIGCpython
系列文章目录【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系【diffusers极速入门(四)】EMA操作是什么?【diffusers极速入门(五)】扩散模型中的Schedul
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- 【安装cudnn】
Eternal-Student
linuxlinux
官网下载并安装如果打算使用深度学习框架,如TensorFlow或PyTorch,并且需要GPU加速,可能还需要安装NVIDIA的cuDNN库,它是一个GPU加速的深度神经网络库。officialweb:https://developer.nvidia.com/cudnn下载具体:cuDNN9.5.0Downloads历史版本下载:https://developer.nvidia.com/rdp/c
- Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归
liuhui244
深度强化学习深度学习pytorch回归
本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程,来学习模型的实现,我们会介绍numpy是如何学习的,以及我们如何一步步的通过torch的接口来实现简单化的过程,优雅的展示我们的代码,已经我们的代码完成的事情numpy的线性回归在此之前,先看看现在的numpy实现的学习的过程是什么样的#引入计算模块importnumpyasnpfromsklearn.linear_model
- 如何在 Ubuntu 18.04 上升级 gcc 到 9.4:一步步详细指南
草莓奶忻
#Linuxubuntulinux运维c++
文章目录问题描述问题解决1.添加Toolchain测试PPA2.安装GCC和G++3.更新替代版本4.验证安装5.出现报错在执行sudoaptinstallgcc-9g++-9时,出现以下报错。解决方案更换默认的Ubuntu软件源问题描述在尝试编译PyTorch时遇到的报错提示需要GCC版本9.3或更高,但系统中安装的是版本7.5.0。因此,需要升级GCC到至少9.3版本。damon@damon-
- PyTorch中,view, reshape, 或者 permute 的区别和联系
不是吧这都有重名
pytorchpytorch人工智能python
在PyTorch中,view、reshape和permute都是用于改变张量形状的方法,但它们的工作方式和使用场景略有不同。以下是它们的区别和联系:1.view功能:view函数用于改变张量的形状,返回的是一个新张量,它与原始张量共享数据内存(相当于浅拷贝)。要求:view只能在张量是连续的(contiguous)的情况下使用。如果张量在内存中不是连续存储的(例如经过transpose或permu
- PyTorch transpose、permute、view和einops.rearrange
qq_27390023
pytorch人工智能python深度学习
einops.rearrange和PyTorch中的transpose、permute以及view都用于张量的操作,但它们的功能侧重和用法各有不同。以下是它们的详细比较和区别:1.功能和用途对比功能/操作einops.rearrangetorch.transposetorch.permutetorch.view维度交换支持直接通过模式字符串交换维度,同时支持插入、移除维度交换两个特定维度以任意顺序
- pytorch torch.vmap函数介绍
qq_27390023
pytorch人工智能python
torch.vmap是PyTorch提供的一个高效矢量化映射函数,用于对批量数据上的操作进行自动矢量化。它可以显著提高代码的性能和可读性,避免显式使用循环来操作批量数据。torch.vmap的核心功能对函数进行批量化操作。自动扩展函数,使其可以作用于批量输入(即N个样本)。提供对批量维度的灵活控制,包括指定输入输出的批量维度。函数签名torch.vmap(func,in_dims=0,out_di
- 基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版)
矩阵猫咪
cnntransformerpytorch卷积神经网络深度学习
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。随着城市化进程的加速,交通流量预测成为城市交通管理与规划中的关键任务。准确的交通流量预测
- pytorch中tensor的底层存储方式,维度变换permute/view/reshape,维度大小和数目
lppfwl
pytorchpytorch
记录一下pytorch中tensor的底层存储方式,维度变换permute/view/reshape,维度大小和数目。tensor的底层存储方式tensor的底层存储是按照行优先的原则存储的,比如:>>importtorch>>a=tensor.rand((2,2,3))>>atensor([[[0.1345,0.4907,0.8740],[0.4888,0.5481,0.8513]],[[0.1
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>