- Open3D 使用RANSAC分割平面
今夕是何年,
单目+双目计算机视觉
目录1,概述2,拟合平面3,实现过程4,主要函数:defsegment_plane(self,distance_threshold,ransac_n,num_iterations):'''5,代码实现6,结果展示1,概述随机抽样一致性算法QRANSAC(Randomsampleconsensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。RANSAC算法本质上由两步组成
- Python计算机视觉编程 第三章 图像到图像的映射
一只小小程序猿
计算机视觉pythonopencv
目录单应性变换直接线性变换算法仿射变换图像扭曲图像中的图像分段仿射扭曲创建全景图RANSAC拼接图像单应性变换单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里,平面是指图像或者三维中的平面表面。单应性变换具有很强的实用性,比如图像配准、图像纠正和纹理扭曲,以及创建全景图像。单应性变换本质上是一种二维到二维的映射,可以将一个平面内的点映射到另一个平面上的对应点。代码如下:impo
- 第二章可通行栅格建立(PCA方法)
喜欢躺着玩
点云处理与导航3dc++
系列文章目录这一篇主要讲怎么通过PCA建立栅格可通行栅格,这部分其实有非常多的方法,这也只是当时前期使用的一个简单demo文章目录系列文章目录前言一、栅格地图二、RTK定位1.更新位置2.将点云读入到栅格地图中3.对每个栅格进行PCA判断总结前言提示:这里可以添加本文要记录的大概内容:对于做工程来说,一般地面分割使用PCA,生长算法以及RANSAC拟合平面较多,但是ransac的波动较为敏感,生长
- Open3D 点云配准-Ransac算法(粗配准)
白葵新
算法人工智能python计算机视觉图像处理3d
目录一、概述1.1简介1.2RANSAC在点云粗配准中的应用步骤二、代码实现2.1关键函数2.2完整代码2.3代码解析2.3.1计算FPFH1.法线估计2.计算FPFH特征2.3.2全局配准1.函数:execute_global_registration2.距离阈值3.registration_ransac_based_on_feature_matching函数三、实现效果3.1原始点云3.2配准
- 回归分析系列22— 稳健回归
技术与健康
线性回归
23章稳健回归23.1简介稳健回归是一种在数据中存在异常值或噪声时,依然能够提供合理估计的回归方法。传统的线性回归对异常值非常敏感,因为它最小化的是平方误差。这意味着大的离群点会对回归系数产生很大影响。23.2常见的稳健回归方法稳健回归方法通过对异常值降低权重,或者对损失函数进行修正,以减少这些点对模型的影响。常见的稳健回归方法包括:M估计:通过改变损失函数,使得它对异常值不敏感。RANSAC:随
- open3d 平面分割(Ransac算法)
云杂项
open3d持续更新算法平面计算机视觉python3dnumpy
open3d平面分割(Ransac算法)一、算法原理1、`Ransac`介绍2、主要函数二、代码三、效果1、原点云数据2、平面分割四、相关数据一、算法原理1、Ransac介绍RANSAC(RAndomSAmpleConsensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。“外点”一般指的是数据中的噪声,比如说匹配中的误匹配和估计曲线中的离群
- ICRA2023 | 通用、自动和无标定目标的Lidar-Camera外参标定工具箱
自动驾驶之心
数码相机人工智能
原文链接:https://arxiv.org/pdf/2302.05094.pdf本文介绍了一种开源的激光雷达相机标定工具箱,该工具箱适用于激光雷达和相机投影模型,只需要一对激光雷达和相机数据,而无需标定目标,并且是全自动的。对于自动初始猜测估计,本文使用SuperGlue图像匹配pipeline来查找LiDAR和相机数据之间的2D-3D对应关系,并通过RANSAC估计LiDAR相机变换。给定初始
- ransac拟合直线和平面(matlab版本)
Optimization
参考资料:[1]RANSAC介绍(Matlab版直线拟合+平面拟合)主要思想:迭代100次,找出内点内点最多的参数模型。修改的问题:原作者ransac拟合直线的参数以及ransac拟合平面的参数我认为有误,在这个基础上进行了修正。1ransac拟合直线clc;clearall;closeall;%%%二维直线拟合%%%生成随机数据%内点mu=[00];%均值S=[12.5;2.58];%协方差da
- 第十一篇【传奇开心果系列】Python的OpenCV技术点案例示例:三维重建
传奇开心果编程
Python库OpenCV技术点案例示例短博文python计算机视觉opencv
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录一、前言二、OpenCV三维重建介绍三、基于区域的SGBM示例代码四、BM(BlockMatching)算法介绍和示例代码五、基于能量最小化的GC(GraphCut)算法介绍和示例代码六、相机标定介绍和示例代码七、特征提取与匹配介绍和示例代码八、三角测量介绍和示例代码九、通过特征匹配和RANSAC(Random
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- ORBSLAM3 运行流程 以rgbd_tum.cc函数为例进行分析
水理璇浮
ORBSLAM3数码相机
一、运行使用的是D435i相机自己录制的数据。运行命令:./Examples/RGB-D/rgbd_tum'/opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Vocabulary/ORBvoc.txt''/opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Examples/RGB-D/TU
- ORB-SLAM策略思考之RANSAC
rookie-rookie-lu
ORB-SLAM算法人工智能计算机视觉机器人
ORB-SLAM策略思考之RANSAC1.初始化器的RANSACORB-SLAM中的初始化器是一个端到端的地图初始化策略,即不需要人的参与双线程同时计算本质矩阵和单应性矩阵使用基于RANSAC和卡方检验的评价方法为了保证两种算法评价的一致性,计算本质矩阵F和单应性矩阵H都采用统一的8点法、5.991卡方值和相同的RANSAC迭代次数。对每次RANSAC迭代,进行最佳得分对应的变换矩阵、内点位置进行
- ORB-SLAM中的RANSAC算法解析
rookie-rookie-lu
ORB-SLAM算法人工智能计算机视觉
RANSAC算法解析RANSAC是一种在具有噪声的模型中去估计最优的一个算法,其核心思想是采用不断迭代的方法去选择一组全是内点的集合,并采用该集合进行模型估计的一种方法,可以提高模型估计的鲁棒性。假设目前有KKK组采集到的数据,但是数据中的一些点是噪声点,如何使用RANSAC去根据这些有噪声的数据去估计一个比较好的模型呢?选择任意一种能够根据当前采集的数据进行模型评估的方法。使用有放回抽样的方式抽
- RANSAC算法(仅供学习使用)
RPCR
算法汇总算法机器学习人工智能
1.定义RANSAC(RandomSampleConsensus)算法是一种基于随机采样的迭代算法,用于估计一个数学模型参数。它最初由Fischler和Bolles于1981年提出,主要用于计算机视觉和计算机图形学中的模型拟合和参数估计问题。RANSAC算法的基本思想是通过随机采样一小部分数据来估计模型参数,然后用这个模型对所有数据进行测试,将满足模型的数据点作为内点,不满足模型的数据点作为外点。
- OpenVSLAM在Ubuntu16.04下编译安装
hhh0209
vslamlinux
最近开始学习VSLAM,理论知识大概了解了一下,想要学透还是需要下一番功夫的。为了领导的任务,先把OpenVSLAM装上,跑个demo看看。我平时用windows比较多,改成Linux还是得适应一下。参考资料主要有:1参考12参考23官方安装文档按着这些教程,基本能安装下来,中间也会有些小问题,记录如下:1,参考1里的依赖安装第10条我没有安装成功;2,我的OPENCV是3.4.0版本;3,安装y
- 三维重建(6)--多视图几何
Struart_R
三维重建人工智能三维重建计算机视觉
目录一、运动恢复问题(SfM)二、欧式结构恢复问题1、概述2、算法流程3、本质矩阵分解4、欧式结构恢复歧义三、仿射结构恢复问题1、概述2、因式分解法3、仿射结构恢复歧义四、透视结构恢复问题1、概述2、透视结构恢复歧义3、代数方法4、捆绑调整五、P3P问题六、随机采样一致性(RANSAC)一、运动恢复问题(SfM)运动恢复问题:通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像
- 三维重建(7)--运动恢复结构SfM系统解析
Struart_R
三维重建人工智能计算机视觉三维重建三维建模
目录一、SfM系统(两视图)1、特征提取2、特征匹配3、RANSAC求解基础矩阵F4、完整的欧式结构恢复算法流程二、基于增量法的SfM系统(以OpenMVG为例)1、预处理2、图像特征点提取与匹配3、两视图重构点云4、增加新视图,多视图重构一、SfM系统(两视图)对于欧式结构恢复的两视图问题,需要获得三维场景的m张图像的像坐标作为已知条件,求解三维场景结构(即三维点坐标),m个摄像机的外参数R和T
- CloudCompare 二次开发(27)——RANSAC分割提取多个圆柱
点云侠
CloudCompare二次开发c++开发语言算法3d计算机视觉
目录一、概述二、代码集成三、结果展示一、概述 使用CloudCompare与PCL编程实现的RANSAC分割提取多个圆柱。具体计算原理见:PCLRANSAC分割提取多个圆柱。二、代码集成1、mainwindow.h文件public中添加:voiddoActionPCLRansacFitMultiCylinder();//分割多个圆柱2、mainwindow.cpp文件voidMainWindow
- CloudCompare 二次开发(26)——RANSAC分割多个平面
点云侠
CloudCompare二次开发平面人工智能计算机视觉算法c++
目录一、概述二、代码集成三、结果展示一、概述 使用CloudCompare与PCL编程实现的RANSAC分割多个平面。具体计算原理见:PCLRANSAC分割多个平面。二、代码集成1、mainwindow.h文件public中添加:voiddoActionPCLRansacFitMultiPlane();//分割多个平面2、mainwindow.cpp文件voidMainWindow::conne
- VSLAM中的特征点三角化
nice-wyh
算法
特征点三角化(Triangulation)是VSLAM中一个非常基础的问题,它是根据特征点在多个相机下的投影恢复出特征点的3D坐标。特征点在某个相机中被观测到,根据相机位姿和观测向量可以得到3D空间中的一条从相机中心出发的观测“射线”,多个相机位姿观测会产生多条观测射线,理想情况下这些观测射线相交于空间中一点,求所有观测射线的交点就是特征点在3D空间的位置,这就是三角化最朴素的思想。实际中由于噪声
- RANSAC(Random sample consensus)随机抽样一致性
1037号森林里一段干木头
#经典机器学习计算机视觉人工智能数学建模RANSAC数据拟合
文章目录1.算法介绍2.实现过程3.以直线拟合为例4.直线的描述5.源码参考连接1.算法介绍RANSAC(RandomSampleConsensus)是一种迭代的参数估计算法,用于从包含噪声和异常值的数据中拟合数学模型。它最初由Fischler和Bolles于1981年提出,被广泛应用于计算机视觉和计算机图形学等领域。RANSAC的核心思想是随机选择数据中的一小部分样本,并根据这些样本拟合一个模型
- python数字图像处理基础(九)——特征匹配
_hermit:
数字图像处理pythonopencv开发语言计算机视觉
目录蛮力匹配(ORB匹配)RANSAC算法全景图像拼接蛮力匹配(ORB匹配)Brute-Force匹配非常简单,首先在第一幅图像中选取一个关键点然后依次与第二幅图像的每个关键点进行(描述符)距离测试,最后返回距离最近的关键点.对于BF匹配器,首先我们必须使用**cv2.BFMatcher()**创建BFMatcher对象。它需要两个可选的参数:normType:它指定要使用的距离测量,默认情况下,
- 导航与定位技术已成为移动机器人的核心技术之一
Fuweizn
移动机器人自动化生产线AGV智能搬运机器人自动化机器人工业自动化
随着移动机器人技术的不断发展和应用领域的扩大,导航与定位技术已成为移动机器人的核心技术之一。本文将介绍移动机器人导航与定位技术的发展现状、技术前沿和面临的挑战。一、导航与定位技术的发展现状移动机器人的导航与定位技术是实现自主移动的关键。目前,移动机器人的导航与定位技术主要包括基于GPS、SLAM、VSLAM等技术的方法。1、GPS导航技术:利用全球定位系统进行定位,精度高、覆盖范围广,但需要外部信
- vslam论文24:ESVIO: 基于事件相机的双目VIO(RAL 2023)
xsyaoxuexi
视觉SLAM论文阅读c++人工智能学习笔记
摘要异步输出低延迟事件流的事件相机为具有挑战性的情况下的状态估计提供了很大的机会。尽管近年来基于事件的视觉里程测量技术得到了广泛的研究,但大多数都是基于单目的,而对立体事件视觉的研究很少。在本文中,我们介绍了ESVIO,这是第一个基于事件的立体视觉惯性里程计,它利用了事件流、标准图像和惯性测量的互补优势。我们建议的pipeline包括ESIO(纯基于事件的)和ESVIO(带有图像辅助的事件),它们
- vslam论文25: 结构约束的RGB-D SLAM(ICRA 2021)
xsyaoxuexi
视觉SLAM论文阅读c++平面学习计算机视觉笔记
摘要本文提出了一种专门为结构化环境设计的RGB-DSLAM系统,旨在通过从周围提取的几何特征来提高跟踪和制图精度。除了点之外,结构化环境还提供了大量的几何特征,如线和平面,我们利用这些特征来设计SLAM系统的跟踪和映射组件。对于跟踪部分,我们基于曼哈顿世界(MW)的假设探索这些特征之间的几何关系。我们提出了一种基于点、线和面的解耦优化方法,以及在附加的姿态优化模块中使用曼哈顿关系。在建图部分,以较
- vslam论文10:PL-VINS:具有点和线特征的实时单目视觉惯性SLAM
xsyaoxuexi
视觉SLAM论文阅读笔记c++
摘要PL-VINS是基于最先进的基于点的VINS-mono,开发的一种基于点和线特征的实时、高效优化的单目VINS方法。我们观察到,目前的作品使用LSD算法提取线条特征;然而,LSD是为场景形状表示而设计的,而不是为姿态估计问题设计的,由于其高昂的计算成本,这成为了实时性能的瓶颈。在本文中,我们通过研究隐藏参数调整和长度抑制策略来改进LSD算法。改进后的LSD算法的运行速度至少是LSD的三倍。此外
- vslam论文15:DynaVINS: 一种动态环境下的视觉惯性SLAM(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读笔记c++学习
摘要视觉惯性里程计和SLAM算法广泛应用于服务机器人、无人机和自动驾驶汽车等领域。大多数SLAM算法都是基于假设地标是静态的。然而,在现实世界中,存在着各种各样的动态物体,它们降低了姿态估计的精度。此外,临时静态对象(在观察期间是静态的,但在视线之外时移动)会触发误报循环关闭。为了克服这些问题,我们提出了一种新的视觉惯性SLAM框架,称为DynaVINS,它对动态目标和临时静态目标都具有鲁棒性。在
- vslam论文23:VIP-SLAM: 一种高效、紧耦合的RGB-D视觉惯性平面SLAM(ICRA 2022)
xsyaoxuexi
视觉SLAM论文阅读平面人工智能算法笔记c++学习
摘要本文提出了一种融合RGB、Depth、IMU和结构化平面信息的紧密耦合SLAM系统。传统的基于稀疏点的SLAM系统总是保持大量的地图点来建模环境。大量的地图点给我们带来了很高的计算复杂度,使其难以部署在移动设备上。另一方面,平面是人造环境尤其是室内环境中常见的结构形式。我们通常可以使用少量的平面来表示一个大的场景。因此,本文的主要目的是降低基于稀疏点的SLAM的高复杂性。我们构建了一个轻量级的
- vslam论文8:EPLF-VINS: Real-Time Monocular Visual-InertialSLAM With Efficient Point-Line Flow Features
xsyaoxuexi
视觉SLAM论文阅读人工智能学习自动驾驶c++
(RAL2023)摘要本文介绍了一种利用点和线特征的高效视觉惯性同步定位和映射(SLAM)方法。目前,基于点的SLAM方法在弱纹理和运动模糊等场景下表现不佳。许多研究者注意到线特征在空间中的优异特性,并尝试开发基于线的SLAM系统。然而,线条提取和描述匹配过程的计算量巨大,难以保证整个SLAM系统的实时性,而错误的线条检测和匹配限制了SLAM系统性能的提高。本文通过短线融合、线特征均匀分布、自适应
- open3d
树和猫
点云python
文章目录open3d1.点云读写2.点云可视化2.1可视化单个点云2.2可视化多个点云2.3可视化属性3.k-dtree与Octree3.1k-dtree3.2Octree4.滤波4.1体素下采样4.2统计滤波4.3半径滤波5.特征提取5.1法线估计6.分割6.1DBSCAN聚类分割6.2RANSAC平面分割6.3隐藏点剔除7.曲面重建7.1Alphashapes7.2Ballpivoting7.
- ztree异步加载
3213213333332132
JavaScriptAjaxjsonWebztree
相信新手用ztree的时候,对异步加载会有些困惑,我开始的时候也是看了API花了些时间才搞定了异步加载,在这里分享给大家。
我后台代码生成的是json格式的数据,数据大家按各自的需求生成,这里只给出前端的代码。
设置setting,这里只关注async属性的配置
var setting = {
//异步加载配置
- thirft rpc 具体调用流程
BlueSkator
中间件rpcthrift
Thrift调用过程中,Thrift客户端和服务器之间主要用到传输层类、协议层类和处理类三个主要的核心类,这三个类的相互协作共同完成rpc的整个调用过程。在调用过程中将按照以下顺序进行协同工作:
(1) 将客户端程序调用的函数名和参数传递给协议层(TProtocol),协议
- 异或运算推导, 交换数据
dcj3sjt126com
PHP异或^
/*
* 5 0101
* 9 1010
*
* 5 ^ 5
* 0101
* 0101
* -----
* 0000
* 得出第一个规律: 相同的数进行异或, 结果是0
*
* 9 ^ 5 ^ 6
* 1010
* 0101
* ----
* 1111
*
* 1111
* 0110
* ----
* 1001
- 事件源对象
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- MySql配置及相关命令
g21121
mysql
MySQL安装完毕后我们需要对它进行一些设置及性能优化,主要包括字符集设置,启动设置,连接优化,表优化,分区优化等等。
一 修改MySQL密码及用户
 
- [简单]poi删除excel 2007超链接
53873039oycg
Excel
采用解析sheet.xml方式删除超链接,缺点是要打开文件2次,代码如下:
public void removeExcel2007AllHyperLink(String filePath) throws Exception {
OPCPackage ocPkg = OPCPac
- Struts2添加 open flash chart
云端月影
准备以下开源项目:
1. Struts 2.1.6
2. Open Flash Chart 2 Version 2 Lug Wyrm Charmer (28th, July 2009)
3. jofc2,这东西不知道是没做好还是什么意思,好像和ofc2不怎么匹配,最好下源码,有什么问题直接改。
4. log4j
用eclipse新建动态网站,取名OFC2Demo,将Struts2 l
- spring包详解
aijuans
spring
下载的spring包中文件及各种包众多,在项目中往往只有部分是我们必须的,如果不清楚什么时候需要什么包的话,看看下面就知道了。 aspectj目录下是在Spring框架下使用aspectj的源代码和测试程序文件。Aspectj是java最早的提供AOP的应用框架。 dist 目录下是Spring 的发布包,关于发布包下面会详细进行说明。 docs&nb
- 网站推广之seo概念
antonyup_2006
算法Web应用服务器搜索引擎Google
持续开发一年多的b2c网站终于在08年10月23日上线了。作为开发人员的我在修改bug的同时,准备了解下网站的推广分析策略。
所谓网站推广,目的在于让尽可能多的潜在用户了解并访问网站,通过网站获得有关产品和服务等信息,为最终形成购买决策提供支持。
网站推广策略有很多,seo,email,adv
- 单例模式,sql注入,序列
百合不是茶
单例模式序列sql注入预编译
序列在前面写过有关的博客,也有过总结,但是今天在做一个JDBC操作数据库的相关内容时 需要使用序列创建一个自增长的字段 居然不会了,所以将序列写在本篇的前面
1,序列是一个保存数据连续的增长的一种方式;
序列的创建;
CREATE SEQUENCE seq_pro
2 INCREMENT BY 1 -- 每次加几个
3
- Mockito单元测试实例
bijian1013
单元测试mockito
Mockito单元测试实例:
public class SettingServiceTest {
private List<PersonDTO> personList = new ArrayList<PersonDTO>();
@InjectMocks
private SettingPojoService settin
- 精通Oracle10编程SQL(9)使用游标
bijian1013
oracle数据库plsql
/*
*使用游标
*/
--显示游标
--在显式游标中使用FETCH...INTO语句
DECLARE
CURSOR emp_cursor is
select ename,sal from emp where deptno=1;
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
begin
ope
- 【Java语言】动态代理
bit1129
java语言
JDK接口动态代理
JDK自带的动态代理通过动态的根据接口生成字节码(实现接口的一个具体类)的方式,为接口的实现类提供代理。被代理的对象和代理对象通过InvocationHandler建立关联
package com.tom;
import com.tom.model.User;
import com.tom.service.IUserService;
- Java通信之URL通信基础
白糖_
javajdkwebservice网络协议ITeye
java对网络通信以及提供了比较全面的jdk支持,java.net包能让程序员直接在程序中实现网络通信。
在技术日新月异的现在,我们能通过很多方式实现数据通信,比如webservice、url通信、socket通信等等,今天简单介绍下URL通信。
学习准备:建议首先学习java的IO基础知识
URL是统一资源定位器的简写,URL可以访问Internet和www,可以通过url
- 博弈Java讲义 - Java线程同步 (1)
boyitech
java多线程同步锁
在并发编程中经常会碰到多个执行线程共享资源的问题。例如多个线程同时读写文件,共用数据库连接,全局的计数器等。如果不处理好多线程之间的同步问题很容易引起状态不一致或者其他的错误。
同步不仅可以阻止一个线程看到对象处于不一致的状态,它还可以保证进入同步方法或者块的每个线程,都看到由同一锁保护的之前所有的修改结果。处理同步的关键就是要正确的识别临界条件(cri
- java-给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
bylijinnan
java
public class DeleteExtraSpace {
/**
* 题目:给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
* 方法1.用已有的String类的trim和replaceAll方法
* 方法2.全部用正则表达式,这个我不熟
* 方法3.“重新发明轮子”,从头遍历一次
*/
public static v
- An error has occurred.See the log file错误解决!
Kai_Ge
MyEclipse
今天早上打开MyEclipse时,自动关闭!弹出An error has occurred.See the log file错误提示!
很郁闷昨天启动和关闭还好着!!!打开几次依然报此错误,确定不是眼花了!
打开日志文件!找到当日错误文件内容:
--------------------------------------------------------------------------
- [矿业与工业]修建一个空间矿床开采站要多少钱?
comsci
地球上的钛金属矿藏已经接近枯竭...........
我们在冥王星的一颗卫星上面发现一些具有开采价值的矿床.....
那么,现在要编制一个预算,提交给财政部门..
- 解析Google Map Routes
dai_lm
google api
为了获得从A点到B点的路劲,经常会使用Google提供的API,例如
[url]
http://maps.googleapis.com/maps/api/directions/json?origin=40.7144,-74.0060&destination=47.6063,-122.3204&sensor=false
[/url]
从返回的结果上,大致可以了解应该怎么走,但
- SQL还有多少“理所应当”?
datamachine
sql
转贴存档,原帖地址:http://blog.chinaunix.net/uid-29242841-id-3968998.html、http://blog.chinaunix.net/uid-29242841-id-3971046.html!
------------------------------------华丽的分割线--------------------------------
- Yii使用Ajax验证时,如何设置某些字段不需要验证
dcj3sjt126com
Ajaxyii
经常像你注册页面,你可能非常希望只需要Ajax去验证用户名和Email,而不需要使用Ajax再去验证密码,默认如果你使用Yii 内置的ajax验证Form,例如:
$form=$this->beginWidget('CActiveForm', array( 'id'=>'usuario-form',&
- 使用git同步网站代码
dcj3sjt126com
crontabgit
转自:http://ued.ctrip.com/blog/?p=3646?tn=gongxinjun.com
管理一网站,最开始使用的虚拟空间,采用提供商支持的ftp上传网站文件,后换用vps,vps可以自己搭建ftp的,但是懒得搞,直接使用scp传输文件到服务器,现在需要更新文件到服务器,使用scp真的很烦。发现本人就职的公司,采用的git+rsync的方式来管理、同步代码,遂
- sql基本操作
蕃薯耀
sqlsql基本操作sql常用操作
sql基本操作
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:30:33 星期一
&
- Spring4+Hibernate4+Atomikos3.3多数据源事务管理
hanqunfeng
Hibernate4
Spring3+后不再对JTOM提供支持,所以可以改用Atomikos管理多数据源事务。Spring2.5+Hibernate3+JTOM参考:http://hanqunfeng.iteye.com/blog/1554251Atomikos官网网站:http://www.atomikos.com/ 一.pom.xml
<dependency>
<
- jquery中两个值得注意的方法one()和trigger()方法
jackyrong
trigger
在jquery中,有两个值得注意但容易忽视的方法,分别是one()方法和trigger()方法,这是从国内作者<<jquery权威指南》一书中看到不错的介绍
1) one方法
one方法的功能是让所选定的元素绑定一个仅触发一次的处理函数,格式为
one(type,${data},fn)
&nb
- 拿工资不仅仅是让你写代码的
lampcy
工作面试咨询
这是我对团队每个新进员工说的第一件事情。这句话的意思是,我并不关心你是如何快速完成任务的,哪怕代码很差,只要它像救生艇通气门一样管用就行。这句话也是我最喜欢的座右铭之一。
这个说法其实很合理:我们的工作是思考客户提出的问题,然后制定解决方案。思考第一,代码第二,公司请我们的最终目的不是写代码,而是想出解决方案。
话粗理不粗。
付你薪水不是让你来思考的,也不是让你来写代码的,你的目的是交付产品
- 架构师之对象操作----------对象的效率复制和判断是否全为空
nannan408
架构师
1.前言。
如题。
2.代码。
(1)对象的复制,比spring的beanCopier在大并发下效率要高,利用net.sf.cglib.beans.BeanCopier
Src src=new Src();
BeanCopier beanCopier = BeanCopier.create(Src.class, Des.class, false);
- ajax 被缓存的解决方案
Rainbow702
JavaScriptjqueryAjaxcache缓存
使用jquery的ajax来发送请求进行局部刷新画面,各位可能都做过。
今天碰到一个奇怪的现象,就是,同一个ajax请求,在chrome中,不论发送多少次,都可以发送至服务器端,而不会被缓存。但是,换成在IE下的时候,发现,同一个ajax请求,会发生被缓存的情况,只有第一次才会被发送至服务器端,之后的不会再被发送。郁闷。
解决方法如下:
① 直接使用 JQuery提供的 “cache”参数,
- 修改date.toLocaleString()的警告
tntxia
String
我们在写程序的时候,经常要查看时间,所以我们经常会用到date.toLocaleString(),但是date.toLocaleString()是一个过时 的API,代替的方法如下:
package com.tntxia.htmlmaker.util;
import java.text.SimpleDateFormat;
import java.util.
- 项目完成后的小总结
xiaomiya
js总结项目
项目完成了,突然想做个总结但是有点无从下手了。
做之前对于客户端给的接口很模式。然而定义好了格式要求就如此的愉快了。
先说说项目主要实现的功能吧
1,按键精灵
2,获取行情数据
3,各种input输入条件判断
4,发送数据(有json格式和string格式)
5,获取预警条件列表和预警结果列表,
6,排序,
7,预警结果分页获取
8,导出文件(excel,text等)
9,修