- 基于轨迹的视频摘要:多样性损失详解
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍视频摘要技术是现代计算机视觉领域的一个重要研究方向,其主要目标是通过摘取视频中的关键帧或片段,生成一份能够代表原始视频内容的摘要。这样,用户就可以在短时间内了解视频的主要内容,极大地节省了时间。然而,这项技术面临着一个主要的挑战,即如何确保摘要的多样性,也就是说,如何在摘要中覆盖尽可能多的原始视频中的事件或主题。在这方面,基于轨迹的视频摘要算法提供了一种有效的解决方案。这种算法通过在特
- 2024最新 无人机 数据集(12-06已更新)
数据猎手小k
无人机
一、无人机的研究背景无人机技术的发展经历了从最初的遥控靶机到现代多功能无人机的转变。随着电子技术、通信技术、导航技术以及人工智能技术的进步,无人机的性能得到了显著提升,应用领域也不断拓展。特别是在AI技术的加持下,无人机的自主飞行能力、智能决策能力以及数据处理能力都有了质的飞跃。二、无人机的应用:在AI时代,无人机的应用领域得到了极大的扩展,技术的进步使得无人机在多个行业中发挥着越来越重要的作用。
- SCI一区级 | Matlab实现DBO-CNN-LSTM-Mutilhead-Attention蜣螂算法优化卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测
matlab科研社
神经网络matlabcnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。内容介绍1.引言温度预测在多个领域至关重要,例如气象预报、能源管理和农业生产。传统方法通常基于线性模型或统计方法,但这些方法在处理非线性时间序列数据时存在局限性。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)
- 自动驾驶核心技术简介
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
自动驾驶核心技术简介关键词:感知系统、决策系统、控制系统、人工智能、计算机视觉、深度学习、V2X通信摘要:本文全面介绍了自动驾驶的核心技术,包括感知、决策和控制三大系统。文章深入探讨了各系统的关键组成部分、工作原理和最新技术进展。同时,本文还分析了自动驾驶技术在实际应用中面临的挑战,以及未来的发展趋势。通过详细的技术讲解、代码示例和实际案例,为读者提供了全面而深入的自动驾驶技术概览。1.背景介绍1
- DeepSeek-R2模型传闻解析:技术突破与官方辟谣背后的AI竞赛
每天做一点改变
人工智能
2025年3月,人工智能领域因一则传闻掀起波澜:中国AI公司深度求索(DeepSeek)或将于3月17日提前发布下一代模型DeepSeek-R2。尽管官方已紧急辟谣,但技术细节和市场反应仍值得深入探讨。一、传闻中的技术突破多家媒体报道称,DeepSeek-R2在以下领域实现显著提升:编程能力:可高效生成高质量代码,支持算法优化与复杂软件开发,降低开发者负担。多语言推理:突破英语限制,支持跨语言复杂
- 张量运算:人工智能的数学基石
猿享天开
人工智能数学基础专讲人工智能
博主简介:CSDN博客专家、全栈领域优质创作者、高级开发工程师、高级信息系统项目管理师、系统架构师,数学与应用数学专业,10年以上多种混合语言开发经验,从事PACS医学影像开发领域多年,熟悉DICOM协议及其应用开发技术。我的技能涵盖了多种编程语言和技术框架:作为高级C/C++与C#开发工程师,擅长Windows系统下的.NET及C++开发技术,尤其精通MFC、DLL动态链接库、WinForm、W
- 人工智能发展简史:从理论萌芽到大模型时代
meisongqing
人工智能大模型
一、人工智能的起源与早期探索(1940s-1950s)理论基础奠基1943年:神经科学家麦卡洛克(WarrenMcCulloch)与数学家皮茨(WalterPitts)提出“M-P神经元模型”,首次尝试用数学模型模拟人脑神经元活动。1950年:艾伦·图灵(AlanTuring)发表论文《计算机器与智能》,提出“图灵测试”,定义机器智能的核心标准。1956年:达特茅斯会议召开,“人工智能”(AI)一
- 计算机视觉算法实战——手术导航:技术、应用与未来
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.手术导航中的计算机视觉:领域介绍计算机视觉在手术导航领域的应用代表了现代医学与人工智能技术的完美结合,正在彻底改变外科手术的方式。手术导航系统通过将医学影像、实时传感器数据和计算机视觉算法相结合,为外科医生提供了前所未有的精确性和可视化能力,使复杂的手术操作变得更加安全、可控。传统
- 计算机视觉算法实战——病变检测:从原理到应用
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能目标检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.计算机视觉在病变检测领域的概述计算机视觉在医疗影像分析中的应用已经成为人工智能最具前景的领域之一。病变检测作为其中的核心任务,旨在自动识别和定位医学图像中的异常区域,为医生提供辅助诊断工具。这一技术可以显著提高诊断效率,减少人为误差,并在早期疾病筛查中发挥关键作用。医学病变检测与常
- 深度学习模型的压缩与轻量化技术
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习,模型压缩,轻量化,效率,可部署性,精度1.背景介绍深度学习在图像识别、自然语言处理、语音识别等领域取得了突破性的进展,但其模型规模庞大,计算资源需求高,部署成本高昂,这限制了其在移动设备、嵌入式系统等资源受限环境中的应用。因此,深度学习模型的压缩与轻量化技术成为一个重要的研究方向。模型压缩是指通过减少模型参数数量、减少模型层数或减少模型计算量来减小模型规模,从而降低模型存储和计算成本。轻
- TensorFlow-MNIST手写数字分类
Enougme
TensorFlowtensorflow分类人工智能
TensorFlow是一个功能强大的深度学习框架,可以用来构建、训练和部署机器学习模型。主要作用于:构建神经网络模型(回归、分类、生成模型等)。进行数值计算,并提供GPU加速。实现自动梯度求导(如反向传播训练)。应用机器学习模型进行预测。数据准备fromtensorflow.keras.datasetsimportmnist#加载数据集(已划分为训练集和测试集)(x_train,y_train),
- python-常用的深度学习框架
Enougme
TensorFlowpython深度学习开发语言
Python是当前深度学习与机器学习领域的主流编程语言,其丰富的生态系统和多样化的框架使得构建深度学习模型变得非常高效。以下是一些主流的深度学习框架,以及每个框架的特点和适用场景。1.PyTorch特点:动态计算图:支持动态构建和修改计算图,调试体验好,灵活性强。社区生态丰富:拥有大量教程、开源代码和第三方工具支持。广泛应用:深受研究人员和实验开发者的喜爱,也适用于生产环境。TorchScript
- 临床报告深度学习总结
Trank-Lw
深度学习人工智能
你对深度学习模型训练有哪些优化策略?在深度学习模型训练中,优化策略是提升模型性能和效率的关键。以下是一些常见的优化策略:1.数据优化数据预处理:对数据进行清洗、归一化、标准化等操作,以减少噪声并提高模型的收敛速度。数据增强:通过旋转、裁剪、翻转等方式增加数据多样性,尤其在图像处理中效果显著。数据采样:采用过采样或欠采样技术解决数据不平衡问题。2.模型优化模型架构选择:根据任务需求选择合适的模型架构
- 图像多分类的人工智能
love_c++
人工智能分类数据挖掘
当涉及到图像多分类任务,通常会使用深度学习模型,如卷积神经网络(ConvolutionalNeuralNetwork,CNN)。以下是一个使用Python编程语言和TensorFlow库来构建一个简单的图像多分类模型的例子:#导入所需的库importtensorflowastffromtensorflow.kerasimportlayers,models,datasetsimportmatplot
- Stable Diffusion进行图像生成
月月猿java
人工智能
使用StableDiffusion进行图像生成通常涉及以下步骤:安装依赖库:首先,你需要安装必要的Python库,如PyTorch、torchvision、diffusers和transformers等。这些库将为你提供深度学习框架、图像处理工具和StableDiffusion模型的接口。获取预训练模型:StableDiffusion模型通常很大,因此你需要从可靠的来源下载预训练模型。Huggin
- 基于LLM的Agent框架全面比较分析:MGX(MetaGPT X)、AutoGen、OpenHands与秒哒(MiaoDa)
由数入道
人工智能智能体大语言模型智能体框架
摘要本文对当前四种领先的基于LLM的Agent框架——MGX(MetaGPTX)、AutoGen、OpenHands和秒哒(MiaoDa)进行了全面比较分析。这些框架代表了人工智能领域在多智能体协作系统方面的最新进展,各自采用了独特的方法来解决复杂任务自动化问题。通过深入考察每个框架的核心架构、关键特性、目标用例、生态系统和发展前景,本分析旨在为技术决策者、开发者和研究人员提供详尽的参考依据,帮助
- 松灵Cobot Magic&ARIO,打造具身智能百万规模标准化数据集
BFT白芙堂
机器学习ARIO数据集硬件平台CobotMagic机器人
具身人工智能开发的三大主要挑战:数据格式不统一:多源异构数据整合困难,训练资源利用率低。场景多样性不足:现有数据集覆盖场景有限,模型泛化能力受限。高质量数据稀缺:标注数据不足,难以满足大规模训练需求,制约性能提升。松灵CobotMagic:真实场景数据采集的核心平台为应对以上挑战,南科大提出来ARIO(AllRobotsInOne)数据集,松灵CobotMagic凭借以下优势成为硬件平台首选:硬件
- 【transformer理论+实战(三)】必要的 Pytorch 知识
造夢先森
AI大模型transformerpytorch深度学习
【Transformer理论+实战(三)】必要的Pytorch知识【Transformer理论+实战(二)】Lora本地微调实战--deepseek-r1蒸馏模型【Transformer理论+实战(一)】Transformer&LLaMA&Lora介绍文章目录Pytorch基础张量(Tensor)拼接与拆分调整形状索引与切片降维与升维张量计算Pytorch由Facebook人工智能研究院于2017
- Google开源机器学习框架TensorFlow SegFormer优化
深海水
人工智能行业发展IT应用探讨tensorflow人工智能python机器训练机器学习深度学习ai
一、SegFormer的TensorRT加速优化TensorRT是NVIDIA推出的深度学习推理加速库,可以显著提高SegFormer在GPU上的推理速度。1.TensorRT加速流程目标转换SegFormer为TensorRT格式优化FP16/INT8计算提升推理速度(FPS)主要步骤导出TensorFlow模型转换为ONNX格式使用TensorRT进行优化运行TensorRT推理2.代码实现(
- 主流大模型架构
Jeremg
架构
什么是大模型架构大模型架构是指用于构建大规模人工智能模型的特定结构和设计模式,旨在处理海量数据、学习复杂的模式和关系,并实现强大的语言理解、生成、图像识别、语音处理等多种智能任务。以下是一些常见的大模型架构的特点、组成和应用:特点大规模参数:包含大量的参数,通常数以亿计甚至更多,以学习丰富的知识和模式,例如GPT-3拥有1750亿个参数。强大的表示能力:能够对各种类型的数据进行高效的表示和处理,捕
- 人工智能领域毕业设计选题题目合集:课题指导 选题建议
HaiLang_IT
毕业设计选题毕业设计人工智能机器学习
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了人工智能专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇
- 向量数据库的新浪潮:支持向量及标量查询的解决方案
一休哥助手
数据库数据库向量数据库
向量数据库的新浪潮:支持向量及标量查询的解决方案在数据密集型的应用场景中,向量数据库已经成为了一种不可或缺的技术。尤其是在机器学习和人工智能领域,向量数据库能够高效地处理高维数据,为相似性搜索、推荐系统等提供强大支持。然而,随着数据的多样化,单纯的向量搜索已经不能满足所有的需求。因此,支持向量查询同时也支持标量查询(固定条件过滤)的向量数据库成为了新的焦点。本文将探讨几种这样的数据库,并进行比较。
- 《Python实战进阶》No34:卷积神经网络(CNN)图像分类实战
带娃的IT创业者
Python实战进阶pythoncnn分类
第34集:卷积神经网络(CNN)图像分类实战摘要卷积神经网络(CNN)是计算机视觉领域的核心技术,特别擅长处理图像分类任务。本集将深入讲解CNN的核心组件(卷积层、池化层、全连接层),并演示如何使用PyTorch构建一个完整的CNN模型,在CIFAR-10数据集上实现图像分类。我们还将探讨数据增强和正则化技术(如Dropout和BatchNorm)对模型性能的影响。核心概念和知识点1.CNN的核心
- Spring Boot + Spring AI快速体验
m0_74825074
面试学习路线阿里巴巴springspringboot人工智能
SpringAI快速体验1什么是SpringAI主要功能2快速开始2.1版本说明2.2配置文件2.3pom依赖2.3.1springmaven仓库2.3.2核心依赖2.4定义ChatClient2.5启动类2.6测试3参考链接1什么是SpringAISpringAI是Spring的一个子项目,是Spring专门面向于AI的应用框架。SpringAI项目旨在简化整合人工智能功能的应用程序开发,避免不
- 什么是 Embedding?——从直觉到应用的全面解读
忍者算法
人工智能深度学习神经网络机器学习
什么是Embedding?——从直觉到应用的全面解读在机器学习和深度学习的世界里,我们经常会听到“Embedding”这个词。它是深度学习中最核心的概念之一,尤其在自然语言处理(NLP)和推荐系统中应用广泛。但很多初学者对Embedding的理解可能只是:“它是把一个东西转换成数字的方式。”这种解释虽然没错,但过于简略,难以真正理解Embedding的作用。这篇文章将用最直观的方式,带你深入理解E
- 飞桨Paddle Inference模型转ONNX模型的方法
Sweet锦
AIpaddlepaddle人工智能AI编程
ONNX是个好东西,其全称OpenNeuralNetworkExchange,是一种用于表示和交换深度学习模型的开放标准格式。由Microsoft和Facebook在2017年共同推出的一个开放标准,旨在促进不同深度学习框架之间的互操作性,并采用相同格式存储模型数据。ONNX有诸多优势,简直让人爱不释手呀。以下简单列举几个:在不同深度学习框架(如PaddlePaddle、PyTorch、Tenso
- 智能驱动的视频未来:蓝耘MaaS平海螺AI技术的革新与应用
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享linux科技运维性能优化
在当今数字化浪潮中,视频技术与人工智能的深度融合正以前所未有的速度改变各行各业。蓝耘MaaS平海螺AI技术凭借其突破性的架构和前沿算法,正在为智慧城市、自动驾驶、智能监控以及新媒体内容生成等领域带来革命性变革。本文将探讨这一前沿技术的核心原理、实现方法以及未来的应用前景,并通过经典代码示例展示其实际实现。技术背景与发展趋势随着深度学习、边缘计算和大数据分析技术的不断成熟,视频处理正从传统的离线批量
- 机器学习入门第三集——如何完整实现一次模型训练
梯度寻优者_超
机器学习人工智能python算法大数据回归数据分析
提示:如何完整的从数据导入到最后模型训练以及模型保存,本集进行介绍。文章目录上集回顾一、数据集是什么?二、完整训练过程1.导入数据2.数据集划分3.模型训练4.模型保存以及加载总结下集预告上集回顾提示:上集已经对机器学习基础知识分类常用算法等进行了描述,这集开始是如何完整训练模型,前两集已经介绍了机器学习的通俗解释,已经常见分类,还有机器学习深度学习强化学习的关系和区别。有想看的小伙伴可以翻我主页
- 【人工智能】图文详解深度学习中的卷积神经网络(CNN)
AI天才研究院
深度学习实战DeepSeekR1&大数据AI人工智能大模型深度学习人工智能cnn神经网络计算机视觉
【人工智能】图文详解深度学习中的卷积神经网络(CNN)概念和原理为什么要使用卷积神经网络?卷积神经网络简介卷积神经网络的数学公式池化操作:全连接层:激活函数卷积神经网络的C++实现示例代码应用场景自动驾驶影像物体识别医疗影像诊断附:计算机视觉中几种经典的网络结构概念和原理为什么要使用卷积神经网络?在讲述原理之前,我们先来解释为什么我们在图像及视频等等领域的机器学习中要使用CNN。我们都知道,使用多
- Milvus 在多模态数据(图像、文本、音频)向量搜索中的应用
莫比乌斯之梦
技术#Milvusmilvus音视频数据库向量数据库多模态数据
随着人工智能和深度学习的发展,多模态数据检索逐渐成为热门技术,广泛应用于图像搜索、语音识别、跨模态检索、推荐系统等领域。传统的基于关键词或规则的检索方式已经难以满足智能应用的需求,因此,基于向量搜索的近似最近邻(ANN)检索成为主流方案。Milvus作为一款开源的向量数据库,可以高效地存储和检索图像、文本、音频等多模态数据的向量表示。本文将介绍Milvus如何处理多模态数据的向量搜索,以及如何构建
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d