- 基于Split Bregman算法的稀疏图像重建(附带Matlab代码)
代码创造者
算法matlab人工智能Matlab
基于SplitBregman算法的稀疏图像重建(附带Matlab代码)SplitBregman算法是一种用于稀疏图像重建的优化算法,它能够有效地恢复受损的图像并保持重要的细节。本文将详细介绍SplitBregman算法的原理,并提供Matlab代码实现。算法原理SplitBregman算法是一种迭代算法,用于求解具有L1正则化项的优化问题。在图像重建中,我们希望找到一个稀疏表示来恢复受损的图像。该
- 基于增广拉格朗日法和交替方向法的全变分最小化算法
ghie9090
算法
这是TVAL3算法,是基于增广拉格朗日法和交替方向法的全变分最小化算法。这个算法是有关压缩感知的重建算法的例子。TVAL3算法是在最小全变分法的基础上,结合了增强型拉格朗日函数和交替最小化方法。通过交替最小化方法寻找增强型拉格朗日模型的最小值,再由最速下降法进行迭代,更新拉格朗日乘子。TVAL3_beta2.4/TVAL3_beta2.4/A.mat,236TVAL3_beta2.4/TVAL3_
- 基于贝叶斯学习方法的块稀疏信号压缩感知算法
feifeigo123
学习方法matlab
基于贝叶斯学习方法的块稀疏信号压缩感知算法BSBL-FM-master/BSBL_BO.m,15593BSBL-FM-master/BSBL_FM.m,12854BSBL-FM-master/Phi.mat,131256BSBL-FM-master/README.md,3954BSBL-FM-master/demo.mat,1610BSBL-FM-master/demo_fecg.m,1481BS
- 正交与过完备基:从经典展开到压缩感知
DuHz
算法信号处理信息与通信数学建模边缘计算
正交与过完备基:从经典展开到压缩感知在现代信号处理和数据分析中,基底选择决定了我们如何理解和处理信息。正交基展开提供了唯一、高效的信号表示方式,而压缩感知中的过完备非正交基则通过冗余性实现了稀疏表示能力。完全正交基的数学基础完全正交基集合构成了经典信号分析的数学基石。在Hilbert空间HHH中,一组向量v1,v2,...,vn{v₁,v₂,...,vₙ}v1,v2,...,vn称为正交集,当且仅
- 压缩感知解析
DuHz
算法机器学习信号处理开发语言人工智能数学建模线性代数
压缩感知解析理论基础与数学框架压缩感知理论由EmmanuelCandès、TerenceTao、DavidDonoho等数学家在2004年前后建立,该理论证明:对于在某种变换域中具有稀疏性的信号,可以通过远少于奈奎斯特采样率的随机测量实现完美重构。压缩感知的数学框架基本数学模型压缩感知的核心数学模型为:y=Φx+n\mathbf{y}=\boldsymbol{\Phi}\mathbf{x}+\ma
- 智能光学计算成像技术与应用前沿会议通知
m0_75133639
光电光学成像全息成像光学光电光子学光电工程师生物医学工程
会议背景智能光学计算成像是人工智能与光学成像深度融合的前沿领域,通过深度学习、光学神经网络、超表面光学及量子光学等技术,显著推动成像技术的革新。当前研究热点包括:-深度学习赋能的成像技术:如高速多模光纤成像、神经渲染全息三维重建、超分辨率成像-先进光谱与计算成像:基于超表面和衍射光栅的高光谱信息获取、压缩感知成像、无透镜成像-端到端联合设计:融合可微光学模型与深度学习算法,实现硬件-软件协同优化会
- SAR图像压缩感知
xx155802862xx
matlab
SAR图像压缩感知matlab代码对应着汕大闫老师的那本压缩感知及其应用,有需要的可以看一下!!SAR图像压缩感知/baboon.bmp,66616SAR图像压缩感知/camera.bmp,66616SAR图像压缩感知/DWT.m,1265SAR图像压缩感知/Gauss.m,373SAR图像压缩感知/GPSR_Basic.m,21922SAR图像压缩感知/GPSR_BB.m,23882SAR图像压
- 稀疏表示综述:A Survey of Sparse Representation: Algorithms and Applications_2015(2)
mingo_敏
PaperReadingsparsestrategyapplications
稀疏表示综述:ASurveyofSparseRepresentation:AlgorithmsandApplications_2015(2)本文地址:http://blog.csdn.net/shanglianlm/article/details/46866803VI.基于邻近算法的优化策略(PROXIMITYALGORITHMBASEDOPTIMIZATIONSTRATEGY)proximity
- 深度学习篇---抽样
Ronin-Lotus
图像处理篇深度学习篇上位机知识篇深度学习数学建模人工智能
文章目录前言一、数学建模与理论基础奈奎斯特-香农采样定理核心条件物理意义临界情况示例二、非理想采样的实际考量零阶保持(ZOH)采样孔径效应三、多维抽样理论图像采样(二维抽样)实际案例视频采样(三维抽样)四、抽样误差与补偿技术混叠效应分析工程解决方案抗混叠滤波器设计(Butterworth/Chebyshev)量化噪声与过采样五、现代抽样技术演进压缩感知(CompressedSensing)Σ-Δ调
- 基于mimo系统的信道估计算法matlab仿真,对比LS,MMSE以及OMP压缩感知三种算法
Simuworld
MATLAB仿真案例matlab信道估计LSMMSEOMP压缩感知
目录1.算法仿真效果2.MATLAB源码3.算法概述3.1最小二乘(LS)信道估计算法3.2最小均方误差(MMSE)信道估计算法3.3正交匹配追踪(OMP)压缩感知算法4.部分参考文献1.算法仿真效果matlab2022a仿真结果如下:2.MATLAB源码%***********************************************************************
- 模型量化的原因和方法
潇湘馆记
人工智能算法
优化模型参数以适应有限内存环境为了使具有大量参数(例如Llama3.1的4050亿个参数)的大型语言模型在合理内存的设备上高效运行,需要对模型进行一系列优化。这包括理解参数的概念、采用量化技术、剪枝、稀疏表示等方法。参数的概念权重(Weights)定义:权重是连接输入特征与输出预测之间的系数。在神经网络中,每个神经元与其前一层神经元之间的连接都有一个对应的权重。作用:权重决定了输入数据对最终输出的
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合
顶呱呱程序
matlab工程应用matlab计算机视觉人工智能CS-MCA模型医学图像融合卷积稀疏的形态成分分析
基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析(CS-MCA)的稀疏表示(SR)模型,用于像素级医学图像融合。通过CS-MCA模型使用预先学习的字典获得其卡通和纹理组件的CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。2-79卷积稀疏的形态成分分析-小红书(xiaohongshu.com)
- MATLAB使用OMP实现图像的压缩感知实例
superdont
计算机视觉入门matlab计算机视觉图像处理机器学习图像加密人工智能算法
OMP(OrthogonalMatchingPursuit)是一种用于稀疏信号恢复的迭代算法。它的目标是从一组测量值中重建具有少量非零元素的信号。基本步骤以下是OMP算法的简要步骤:初始化残差:将残差初始化为测量向量。迭代过程:a.原子选择:在每次迭代中,从字典中选择与当前残差最相关的原子。b.更新估计:使用所选的原子更新信号的估计。c.更新残差:更新残差,将其减去已匹配的部分。停止条件:重复步骤
- 压缩感知中的稀疏基是什么?
superdont
计算机视觉入门计算机视觉人工智能pythonopencv算法
要压缩感知中,涉及到要将信号转换为稀疏形式。此时,需要用到的就是稀疏基。稀疏基可能是傅里叶基或者小波基。例如,如下参考文献提到:参考基傅里叶基和小波基是用于信号处理和图像处理中的常用数学工具,它们能够帮助我们在不同的基下表示信号,便于对信号的分析、压缩和重建。傅里叶基(FourierBasis):傅里叶基是一组复指数函数(对于连续信号)或者傅里叶级数(对于离散信号),可以用来表示周期性信号。对于任
- 压缩感知常用的测量矩阵
superdont
计算机视觉入门概率论机器学习python算法opencv人工智能计算机视觉
测量矩阵的基本概念在压缩感知(CompressedSensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。测量矩阵的作用测量矩阵的主要作用是从原始高维信号中提取出足够的信息,以便于后续能够从这些较少的信息中准确恢复原信
- 压缩感知或压缩传感
zhoutongchi
特征提取
由来采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指
- 压缩感知(Compressive Sensing)学习
xiaoxixi1918
图像处理
压缩感知(CompressiveSensing)学习之(一)
[email protected]://blog.csdn.net/zouxy09压缩感知(压缩传感,CompressiveSensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D.Donoho(美国科学院院士)、E.Candes(Ridgelet,Curvelet创始人)及华裔科学家T.Tao(2006年菲尔兹奖获得者
- 压缩感知简单介绍
爱学习的一一一
压缩感知网络算法
文章目录前言一、压缩感知是什么?二、压缩感知介绍1、压缩感知的流程2、信号稀疏化表示3、观测矩阵设计4、信号重构总结前言刚接触压缩感知时,面对其概念十分模糊,但是又十分欣赏其作用。在不懈的学习下,算是对压缩感知有了一定的了解啦,在这里将基础知识分享出来,帮助大家一切学习压缩感知~一、压缩感知是什么? 压缩感知(CompressedSensing,CS)是由陶哲轩等人提出的一种用于信息获取的突破性
- 压缩感知
weixin_34185320
人工智能python
2019独角兽企业重金招聘Python工程师标准>>>首先,我们必须要认识到这一点,即CS(CompressedSensing)中的Compressed不同于传统信息论和率失真意义上的compression。在CS中,"Compressed"一词更加准确的描述是一个降维采样的过程,而不是在信源编码意义上的“compression”。在CS中,我们是没有关于原始信号像素域的任何信息,仅仅只有观测域信
- 压缩感知学习资源
zhyoulun
压缩感知压缩感知资源文献编程源码
编程实现:(简单入门)压缩感知正交匹配追踪算法重构二维图像(专业程序)l1-magic(OMP算法的Matlab实现)通过正交匹配追踪算法从随机测量值中恢复信号文献:(列举很详细)中国压缩传感资源(ChinaCompressiveSensingResources)(简单的Review)CompressiveSensing(SP算法)Subspacepursuitforcompressivesens
- 关于一些图像的期刊与会议和小波压缩感知CS
SRT字符不够
图像基础知识图像处理
图像的分辨率主要指的是空间分辨率,即图像的像素密度以及单位面积的像素尺度,它描述了一幅图像中所包含细节的多少。分辨率越高,图像的细节越丰富,包含的信息含量就越多。图像的空间分辨率首先受图像传感器和成像设备的制约,现有的CCD(Charge-coupledDevice,电荷耦合元件)或CMOS(ComplementaryMetalOxideSemiconductor,互补金属氧化物半导体)传感器单元
- 压缩感知——革新数据采集的科学魔法
superdont
计算机视觉人工智能算法计算机视觉opencv系统地学习Pythonpython机器学习
引言:在数字时代,数据以及数据的收集和处理无处不在。压缩感知(CompressedSensing,CS)是一种新兴的数学框架,它挑战了我们传统上对数据采集和压缩的看法,给医学图像、天文观测、环境监测等领域带来了颠覆性的影响。但到底什么是压缩感知,它又为何如此重要呢?本文将为你深入浅出地解释。压缩感知压缩感知(CS)与传统数据压缩的差异:传统信息论告诉我们,数据被采集后通常需要进行压缩以便于存储和传
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 压缩感知进阶 有关稀疏矩阵
还可以吧有点纯纯的
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!上一篇《初识压缩感知CompressiveSensing》中我们已经讲过了压缩感知的作用和基本想法,涉及的领域,本文通过学习陶哲轩对compressivesensing(CS)的课程,对压缩感知做进一步理解,针对
- 压缩感知模型总结
安之少年
高光谱图像采样方式压缩感知信息压缩图像识别
压缩感知采样方式以及模型总结——学习笔记Paper1:RankMinimizationforSnapshotCompressiveImaging研究现状采样方式WNNM与SCI模型非局部相似利用WNNM低秩约束构造模型Paper2:Tensornon-locallow-rankregularizationforrecoveringcompressedhyperspectralimages,2017
- 压缩感知(Compressed Sensing,CS)的基础知识
superdont
计算机视觉计算机视觉人工智能算法opencv矩阵python图像处理
压缩感知(CompressedSensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算法完整重构出原始图像。压缩感知和传统的图像异同点压缩感知和传统的图像获取相比,在获取图像和原始图像方面具有以下异同点:相同点重构目标:
- 周记:2019第26周(6.24-6.30)
孙文辉已被占用
1工作:主要是写文档,一个产品说明书,2个专利交底书2学习:《DeepLearning》7/20(chapters)看完第7章(RegularizationforDeepLearning),这章和下一章讲的优化方法应该是深度学习最重要的理论基础了,好多面试题都会问到。记录一下各种降低模型错误率的方法,包括添加正则化项,数据集扩增,多任务学习,earlystoping,dropout,稀疏表示。理论
- 【信道估计】基于压缩感知双向中继信道估计附Matlab代码
前程算法matlab屋
信号处理matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要在本文中,我们提出了一种基于压缩感知(CS)的双向中继信道估计方法。该方法利用CS理论中的稀疏表示
- Masked Face Recognition Using Deep Learning: A Review
禄亿萋
深度学习人工智能
摘要:本次调查整理并回顾了最近基于深度学习技术为蒙面人脸识别(MFR)开发的工作,提供了对MFR系统开发流程的见解和深入讨论。根据深层网络架构的特点和深层特征提取策略,引入了最先进的技术,还讨论了MFR领域使用的常见基准测试数据集,强调了许多挑战和有前途的研究方向。一、引言遮挡人脸识别(OFR)任务引起了广泛的关注,并且已经提出了许多深度学习方法,包括稀疏表示、自动编码器、基于视频的对象跟踪、双向
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,