2020年5月3日:
问题1:
faster_rcnn是如何加载COCO数据集的?
步骤一:
args.imdb_name = "coco_2017_train+coco_2017_val"
from roi_data_layer.roidb import combined_roidb
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
imdb.num_classes, training=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
COCO数据集的加载主要就是上述三步,到了第三步有了dataLoader就可以基于这个进行训练了。
所以问题的关键在于弄清楚imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)这句中
获取的imdb跟roidb的结构是什么?
combine_roidb的代码如下:
def combined_roidb(imdb_names, training=True):
"""
Combine multiple roidbs
"""
def get_training_roidb(imdb):
"""Returns a roidb (Region of Interest database) for use in training."""
if cfg.TRAIN.USE_FLIPPED:
print('Appending horizontally-flipped training examples...')
imdb.append_flipped_images()
print('done')
print('Preparing training data...')
prepare_roidb(imdb)
#ratio_index = rank_roidb_ratio(imdb)
print('done')
return imdb.roidb
def get_roidb(imdb_name):
imdb = get_imdb(imdb_name)
print('Loaded dataset `{:s}`'.format(imdb.name))
imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
roidb = get_training_roidb(imdb)
return roidb
roidbs = [get_roidb(s) for s in imdb_names.split('+')]
roidb = roidbs[0]
if len(roidbs) > 1:
for r in roidbs[1:]:
roidb.extend(r)
tmp = get_imdb(imdb_names.split('+')[1])
imdb = datasets.imdb.imdb(imdb_names, tmp.classes)
else:
imdb = get_imdb(imdb_names)
if training:
roidb = filter_roidb(roidb)
ratio_list, ratio_index = rank_roidb_ratio(roidb)
return imdb, roidb, ratio_list, ratio_index
从上述代码中可以看到,combine_roidb的核心数据结构来源于:roidb来源于:datasets.factory.get_imdb,imdb来源于datasets.imdb.imdb,因此进入到datasets.imdb.imdb之后,看到的源代码如下:
class imdb(object):
"""Image database."""
def __init__(self, name, classes=None):
self._name = name
self._num_classes = 0
if not classes:
self._classes = []
else:
self._classes = classes
self._image_index = []
self._obj_proposer = 'gt'
self._roidb = None
self._roidb_handler = self.default_roidb
# Use this dict for storing dataset specific config options
self.config = {}
@property
def name(self):
return self._name
@property
def num_classes(self):
return len(self._classes)
@property
def classes(self):
return self._classes
@property
def image_index(self):
return self._image_index
@property
def roidb_handler(self):
return self._roidb_handler
@roidb_handler.setter
def roidb_handler(self, val):
self._roidb_handler = val
def set_proposal_method(self, method):
method = eval('self.' + method + '_roidb')
self.roidb_handler = method
@property
def roidb(self):
# A roidb is a list of dictionaries, each with the following keys:
# boxes
# gt_overlaps
# gt_classes
# flipped
if self._roidb is not None:
return self._roidb
self._roidb = self.roidb_handler()
return self._roidb
@property
def cache_path(self):
cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
if not os.path.exists(cache_path):
os.makedirs(cache_path)
return cache_path
@property
def num_images(self):
return len(self.image_index)
def image_path_at(self, i):
raise NotImplementedError
def image_id_at(self, i):
raise NotImplementedError
def default_roidb(self):
raise NotImplementedError
def evaluate_detections(self, all_boxes, output_dir=None):
"""
all_boxes is a list of length number-of-classes.
Each list element is a list of length number-of-images.
Each of those list elements is either an empty list []
or a numpy array of detection.
all_boxes[class][image] = [] or np.array of shape #dets x 5
"""
raise NotImplementedError
def _get_widths(self):
return [PIL.Image.open(self.image_path_at(i)).size[0]
for i in range(self.num_images)]
def append_flipped_images(self):
num_images = self.num_images
widths = self._get_widths()
for i in range(num_images):
boxes = self.roidb[i]['boxes'].copy()
oldx1 = boxes[:, 0].copy()
oldx2 = boxes[:, 2].copy()
boxes[:, 0] = widths[i] - oldx2 - 1
boxes[:, 2] = widths[i] - oldx1 - 1
assert (boxes[:, 2] >= boxes[:, 0]).all()
entry = {'boxes': boxes,
'gt_overlaps': self.roidb[i]['gt_overlaps'],
'gt_classes': self.roidb[i]['gt_classes'],
'flipped': True}
self.roidb.append(entry)
self._image_index = self._image_index * 2
def evaluate_recall(self, candidate_boxes=None, thresholds=None,
area='all', limit=None):
"""Evaluate detection proposal recall metrics.
Returns:
results: dictionary of results with keys
'ar': average recall
'recalls': vector recalls at each IoU overlap threshold
'thresholds': vector of IoU overlap thresholds
'gt_overlaps': vector of all ground-truth overlaps
"""
# Record max overlap value for each gt box
# Return vector of overlap values
areas = {'all': 0, 'small': 1, 'medium': 2, 'large': 3,
'96-128': 4, '128-256': 5, '256-512': 6, '512-inf': 7}
area_ranges = [[0 ** 2, 1e5 ** 2], # all
[0 ** 2, 32 ** 2], # small
[32 ** 2, 96 ** 2], # medium
[96 ** 2, 1e5 ** 2], # large
[96 ** 2, 128 ** 2], # 96-128
[128 ** 2, 256 ** 2], # 128-256
[256 ** 2, 512 ** 2], # 256-512
[512 ** 2, 1e5 ** 2], # 512-inf
]
assert area in areas, 'unknown area range: {}'.format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = np.zeros(0)
num_pos = 0
for i in range(self.num_images):
# Checking for max_overlaps == 1 avoids including crowd annotations
# (...pretty hacking :/)
max_gt_overlaps = self.roidb[i]['gt_overlaps'].toarray().max(axis=1)
gt_inds = np.where((self.roidb[i]['gt_classes'] > 0) &
(max_gt_overlaps == 1))[0]
gt_boxes = self.roidb[i]['boxes'][gt_inds, :]
gt_areas = self.roidb[i]['seg_areas'][gt_inds]
valid_gt_inds = np.where((gt_areas >= area_range[0]) &
(gt_areas <= area_range[1]))[0]
gt_boxes = gt_boxes[valid_gt_inds, :]
num_pos += len(valid_gt_inds)
if candidate_boxes is None:
# If candidate_boxes is not supplied, the default is to use the
# non-ground-truth boxes from this roidb
non_gt_inds = np.where(self.roidb[i]['gt_classes'] == 0)[0]
boxes = self.roidb[i]['boxes'][non_gt_inds, :]
else:
boxes = candidate_boxes[i]
if boxes.shape[0] == 0:
continue
if limit is not None and boxes.shape[0] > limit:
boxes = boxes[:limit, :]
overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
_gt_overlaps = np.zeros((gt_boxes.shape[0]))
for j in range(gt_boxes.shape[0]):
# find which proposal box maximally covers each gt box
argmax_overlaps = overlaps.argmax(axis=0)
# and get the iou amount of coverage for each gt box
max_overlaps = overlaps.max(axis=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ind = max_overlaps.argmax()
gt_ovr = max_overlaps.max()
assert (gt_ovr >= 0)
# find the proposal box that covers the best covered gt box
box_ind = argmax_overlaps[gt_ind]
# record the iou coverage of this gt box
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert (_gt_overlaps[j] == gt_ovr)
# mark the proposal box and the gt box as used
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
gt_overlaps = np.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = np.arange(0.5, 0.95 + 1e-5, step)
recalls = np.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).sum() / float(num_pos)
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {'ar': ar, 'recalls': recalls, 'thresholds': thresholds,
'gt_overlaps': gt_overlaps}
def create_roidb_from_box_list(self, box_list, gt_roidb):
assert len(box_list) == self.num_images, \
'Number of boxes must match number of ground-truth images'
roidb = []
for i in range(self.num_images):
boxes = box_list[i]
num_boxes = boxes.shape[0]
overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
gt_boxes = gt_roidb[i]['boxes']
gt_classes = gt_roidb[i]['gt_classes']
gt_overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
argmaxes = gt_overlaps.argmax(axis=1)
maxes = gt_overlaps.max(axis=1)
I = np.where(maxes > 0)[0]
overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
overlaps = scipy.sparse.csr_matrix(overlaps)
roidb.append({
'boxes': boxes,
'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
'gt_overlaps': overlaps,
'flipped': False,
'seg_areas': np.zeros((num_boxes,), dtype=np.float32),
})
return roidb
@staticmethod
def merge_roidbs(a, b):
assert len(a) == len(b)
for i in range(len(a)):
a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes']))
a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'],
b[i]['gt_classes']))
a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'],
b[i]['gt_overlaps']])
a[i]['seg_areas'] = np.hstack((a[i]['seg_areas'],
b[i]['seg_areas']))
return a
def competition_mode(self, on):
"""Turn competition mode on or off."""
pass
经过阅读可以发现,datasets.imdb.imdb的作用是为了创建一个imdb的类,这个类没有什么用,唯一的作用就是用来记录COCO数据集的所有类别的名称,记录方式如下:
imdb.classes= np.asarray(
['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck',
'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat',
'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse',
'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
)
进入到datasets.factory.get_imdb中可以看到源代码如下:
def get_imdb(name):
"""Get an imdb (image database) by name."""
if name not in __sets:
raise KeyError('Unknown dataset: {}'.format(name))
return __sets[name]()
datasets.factory.get_imdb的代码非常简洁,他作用是用字典构建了一个函数列表,在调用get_imdb(name)时对应的就去运行函数列表里的每一个函数。
运行的函数如下:
coco(train, 2014)
coco(val, 2014)
此处用到的COCO()构建的是一个COCO对象,他的源码存在于:coco.py源文件中,它来自于coco自带的API,源码如下:
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Xinlei Chen
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datasets.imdb import imdb
import datasets.ds_utils as ds_utils
from model.utils.config import cfg
import os.path as osp
import sys
import os
import numpy as np
import scipy.sparse
import scipy.io as sio
import pickle
import json
import uuid
# COCO API
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as COCOmask
class coco(imdb):
def __init__(self, image_set, year):
imdb.__init__(self, 'coco_' + year + '_' + image_set)
# COCO specific config options
self.config = {'use_salt': True,
'cleanup': True}
# name, paths
self._year = year
self._image_set = image_set
self._data_path = osp.join(cfg.DATA_DIR, 'coco')
# load COCO API, classes, class <-> id mappings
self._COCO = COCO(self._get_ann_file())
cats = self._COCO.loadCats(self._COCO.getCatIds())
self._classes = tuple(['__background__'] + [c['name'] for c in cats])
self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes)))))
self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats],
self._COCO.getCatIds())))
self._image_index = self._load_image_set_index()
# Default to roidb handler
self.set_proposal_method('gt')
self.competition_mode(False)
# Some image sets are "views" (i.e. subsets) into others.
# For example, minival2014 is a random 5000 image subset of val2014.
# This mapping tells us where the view's images and proposals come from.
self._view_map = {
'minival2014': 'val2014', # 5k val2014 subset
'valminusminival2014': 'val2014', # val2014 \setminus minival2014
'test-dev2015': 'test2015',
'valminuscapval2014': 'val2014',
'capval2014': 'val2014',
'captest2014': 'val2014'
}
coco_name = image_set + year # e.g., "val2014"
self._data_name = (self._view_map[coco_name]
if coco_name in self._view_map
else coco_name)
# Dataset splits that have ground-truth annotations (test splits
# do not have gt annotations)
self._gt_splits = ('train', 'val', 'minival')
def _get_ann_file(self):
prefix = 'instances' if self._image_set.find('test') == -1 \
else 'image_info'
return osp.join(self._data_path, 'annotations',
prefix + '_' + self._image_set + self._year + '.json')
def _load_image_set_index(self):
"""
Load image ids.
"""
image_ids = self._COCO.getImgIds()
return image_ids
def _get_widths(self):
anns = self._COCO.loadImgs(self._image_index)
widths = [ann['width'] for ann in anns]
return widths
def image_path_at(self, i):
"""
Return the absolute path to image i in the image sequence.
"""
return self.image_path_from_index(self._image_index[i])
def image_id_at(self, i):
"""
Return the absolute path to image i in the image sequence.
"""
return self._image_index[i]
def image_path_from_index(self, index):
"""
Construct an image path from the image's "index" identifier.
"""
# Example image path for index=119993:
# images/train2014/COCO_train2014_000000119993.jpg
# file_name = ('COCO_' + self._data_name + '_' +
# str(index).zfill(12) + '.jpg')
file_name = (str(index).zfill(12) + '.jpg')
image_path = osp.join(self._data_path, 'images',
self._data_name, file_name)
assert osp.exists(image_path), \
'Path does not exist: {}'.format(image_path)
return image_path
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = osp.join(self.cache_path, self.name + '_gt_roidb.pkl')
if osp.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = pickle.load(fid)
print('{} gt roidb loaded from {}'.format(self.name, cache_file))
return roidb
gt_roidb = [self._load_coco_annotation(index)
for index in self._image_index]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
print('wrote gt roidb to {}'.format(cache_file))
return gt_roidb
def _load_coco_annotation(self, index):
"""
Loads COCO bounding-box instance annotations. Crowd instances are
handled by marking their overlaps (with all categories) to -1. This
overlap value means that crowd "instances" are excluded from training.
"""
im_ann = self._COCO.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
objs = self._COCO.loadAnns(annIds)
# Sanitize bboxes -- some are invalid
valid_objs = []
for obj in objs:
x1 = np.max((0, obj['bbox'][0]))
y1 = np.max((0, obj['bbox'][1]))
x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
objs = valid_objs
num_objs = len(objs)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros((num_objs), dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
seg_areas = np.zeros((num_objs), dtype=np.float32)
# Lookup table to map from COCO category ids to our internal class
# indices
coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
self._class_to_ind[cls])
for cls in self._classes[1:]])
for ix, obj in enumerate(objs):
cls = coco_cat_id_to_class_ind[obj['category_id']]
boxes[ix, :] = obj['clean_bbox']
gt_classes[ix] = cls
seg_areas[ix] = obj['area']
if obj['iscrowd']:
# Set overlap to -1 for all classes for crowd objects
# so they will be excluded during training
overlaps[ix, :] = -1.0
else:
overlaps[ix, cls] = 1.0
ds_utils.validate_boxes(boxes, width=width, height=height)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'width': width,
'height': height,
'boxes': boxes,
'gt_classes': gt_classes,
'gt_overlaps': overlaps,
'flipped': False,
'seg_areas': seg_areas}
def _get_widths(self):
return [r['width'] for r in self.roidb]
def append_flipped_images(self):
num_images = self.num_images
widths = self._get_widths()
for i in range(num_images):
boxes = self.roidb[i]['boxes'].copy()
oldx1 = boxes[:, 0].copy()
oldx2 = boxes[:, 2].copy()
boxes[:, 0] = widths[i] - oldx2 - 1
boxes[:, 2] = widths[i] - oldx1 - 1
assert (boxes[:, 2] >= boxes[:, 0]).all()
entry = {'width': widths[i],
'height': self.roidb[i]['height'],
'boxes': boxes,
'gt_classes': self.roidb[i]['gt_classes'],
'gt_overlaps': self.roidb[i]['gt_overlaps'],
'flipped': True,
'seg_areas': self.roidb[i]['seg_areas']}
self.roidb.append(entry)
self._image_index = self._image_index * 2
def _get_box_file(self, index):
# first 14 chars / first 22 chars / all chars + .mat
# COCO_val2014_0/COCO_val2014_000000447/COCO_val2014_000000447991.mat
file_name = ('COCO_' + self._data_name +
'_' + str(index).zfill(12) + '.mat')
return osp.join(file_name[:14], file_name[:22], file_name)
def _print_detection_eval_metrics(self, coco_eval):
IoU_lo_thresh = 0.5
IoU_hi_thresh = 0.95
def _get_thr_ind(coco_eval, thr):
ind = np.where((coco_eval.params.iouThrs > thr - 1e-5) &
(coco_eval.params.iouThrs < thr + 1e-5))[0][0]
iou_thr = coco_eval.params.iouThrs[ind]
assert np.isclose(iou_thr, thr)
return ind
ind_lo = _get_thr_ind(coco_eval, IoU_lo_thresh)
ind_hi = _get_thr_ind(coco_eval, IoU_hi_thresh)
# precision has dims (iou, recall, cls, area range, max dets)
# area range index 0: all area ranges
# max dets index 2: 100 per image
precision = \
coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, :, 0, 2]
ap_default = np.mean(precision[precision > -1])
print(('~~~~ Mean and per-category AP @ IoU=[{:.2f},{:.2f}] '
'~~~~').format(IoU_lo_thresh, IoU_hi_thresh))
print('{:.1f}'.format(100 * ap_default))
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
# minus 1 because of __background__
precision = coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, cls_ind - 1, 0, 2]
ap = np.mean(precision[precision > -1])
print('{:.1f}'.format(100 * ap))
print('~~~~ Summary metrics ~~~~')
coco_eval.summarize()
def _do_detection_eval(self, res_file, output_dir):
ann_type = 'bbox'
coco_dt = self._COCO.loadRes(res_file)
coco_eval = COCOeval(self._COCO, coco_dt)
coco_eval.params.useSegm = (ann_type == 'segm')
coco_eval.evaluate()
coco_eval.accumulate()
self._print_detection_eval_metrics(coco_eval)
eval_file = osp.join(output_dir, 'detection_results.pkl')
with open(eval_file, 'wb') as fid:
pickle.dump(coco_eval, fid, pickle.HIGHEST_PROTOCOL)
print('Wrote COCO eval results to: {}'.format(eval_file))
def _coco_results_one_category(self, boxes, cat_id):
results = []
for im_ind, index in enumerate(self.image_index):
dets = boxes[im_ind].astype(np.float)
if dets == []:
continue
scores = dets[:, -1]
xs = dets[:, 0]
ys = dets[:, 1]
ws = dets[:, 2] - xs + 1
hs = dets[:, 3] - ys + 1
results.extend(
[{'image_id': index,
'category_id': cat_id,
'bbox': [xs[k], ys[k], ws[k], hs[k]],
'score': scores[k]} for k in range(dets.shape[0])])
return results
def _write_coco_results_file(self, all_boxes, res_file):
# [{"image_id": 42,
# "category_id": 18,
# "bbox": [258.15,41.29,348.26,243.78],
# "score": 0.236}, ...]
results = []
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print('Collecting {} results ({:d}/{:d})'.format(cls, cls_ind,
self.num_classes - 1))
coco_cat_id = self._class_to_coco_cat_id[cls]
results.extend(self._coco_results_one_category(all_boxes[cls_ind],
coco_cat_id))
print('Writing results json to {}'.format(res_file))
with open(res_file, 'w') as fid:
json.dump(results, fid)
def evaluate_detections(self, all_boxes, output_dir):
res_file = osp.join(output_dir, ('detections_' +
self._image_set +
self._year +
'_results'))
if self.config['use_salt']:
res_file += '_{}'.format(str(uuid.uuid4()))
res_file += '.json'
self._write_coco_results_file(all_boxes, res_file)
# Only do evaluation on non-test sets
if self._image_set.find('test') == -1:
self._do_detection_eval(res_file, output_dir)
# Optionally cleanup results json file
if self.config['cleanup']:
os.remove(res_file)
def competition_mode(self, on):
if on:
self.config['use_salt'] = False
self.config['cleanup'] = False
else:
self.config['use_salt'] = True
self.config['cleanup'] = True
这段代码的作用就一个:Faster rcnn的作者Ross Girshick对COCO的API进行了一层包装,除了从原始json标签文件中获取一个COCO类的对象,还封装了一些额外的信息,封装的所有信息可以在__init__()构造函数中看到,具体如下:
def __init__(self, image_set, year):
imdb.__init__(self, 'coco_' + year + '_' + image_set)
# COCO specific config options
self.config = {'use_salt': True,
'cleanup': True}
# name, paths
self._year = year
self._image_set = image_set
self._data_path = osp.join(cfg.DATA_DIR, 'coco')
# load COCO API, classes, class <-> id mappings
self._COCO = COCO(self._get_ann_file())
cats = self._COCO.loadCats(self._COCO.getCatIds())
self._classes = tuple(['__background__'] + [c['name'] for c in cats])
self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes)))))
self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats],
self._COCO.getCatIds())))
self._image_index = self._load_image_set_index()
# Default to roidb handler
self.set_proposal_method('gt')
self.competition_mode(False)
# Some image sets are "views" (i.e. subsets) into others.
# For example, minival2014 is a random 5000 image subset of val2014.
# This mapping tells us where the view's images and proposals come from.
self._view_map = {
'minival2014': 'val2014', # 5k val2014 subset
'valminusminival2014': 'val2014', # val2014 \setminus minival2014
'test-dev2015': 'test2015',
'valminuscapval2014': 'val2014',
'capval2014': 'val2014',
'captest2014': 'val2014'
}
coco_name = image_set + year # e.g., "val2014"
self._data_name = (self._view_map[coco_name]
if coco_name in self._view_map
else coco_name)
# Dataset splits that have ground-truth annotations (test splits
# do not have gt annotations)
self._gt_splits = ('train', 'val', 'minival')
其中 self._COCO是原始COCO的官方API提供的一个解析对象,除此之外,还用self._classes加载了COCO的类别,用self._class_to_ind对COCO的类被与类别ID之间建立了一个映射,还用self._class_to_coco_cat_id对每张图像的类别与类别ID之间建立了映射;self._image_index存储的是所有的图像文件名,并且这里的图像都是有自己对应的categry.self._data_name存储的是所加载的数据的文件名。
此处再深挖一层,那就是所存储的 self._COCO这个类它的结构又是什么呢?我们进入到pycocotools.coco中去研究一下COCO的数据集原生的API,它的源码如下:
from __future__ import print_function
from __future__ import absolute_import
__author__ = 'tylin'
__version__ = '1.0.1'
# Interface for accessing the Microsoft COCO dataset.
# Microsoft COCO is a large image dataset designed for object detection,
# segmentation, and caption generation. pycocotools is a Python API that
# assists in loading, parsing and visualizing the annotations in COCO.
# Please visit http://mscoco.org/ for more information on COCO, including
# for the data, paper, and tutorials. The exact format of the annotations
# is also described on the COCO website. For example usage of the pycocotools
# please see pycocotools_demo.ipynb. In addition to this API, please download both
# the COCO images and annotations in order to run the demo.
# An alternative to using the API is to load the annotations directly
# into Python dictionary
# Using the API provides additional utility functions. Note that this API
# supports both *instance* and *caption* annotations. In the case of
# captions not all functions are defined (e.g. categories are undefined).
# The following API functions are defined:
# COCO - COCO api class that loads COCO annotation file and prepare data structures.
# decodeMask - Decode binary mask M encoded via run-length encoding.
# encodeMask - Encode binary mask M using run-length encoding.
# getAnnIds - Get ann ids that satisfy given filter conditions.
# getCatIds - Get cat ids that satisfy given filter conditions.
# getImgIds - Get img ids that satisfy given filter conditions.
# loadAnns - Load anns with the specified ids.
# loadCats - Load cats with the specified ids.
# loadImgs - Load imgs with the specified ids.
# segToMask - Convert polygon segmentation to binary mask.
# showAnns - Display the specified annotations.
# loadRes - Load algorithm results and create API for accessing them.
# download - Download COCO images from mscoco.org server.
# Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
# Help on each functions can be accessed by: "help COCO>function".
# See also COCO>decodeMask,
# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds,
# COCO>getImgIds, COCO>loadAnns, COCO>loadCats,
# COCO>loadImgs, COCO>segToMask, COCO>showAnns
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.
# Licensed under the Simplified BSD License [see bsd.txt]
import json
import datetime
import time
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import numpy as np
# from skimage.draw import polygon
import urllib
import copy
import itertools
from . import mask
import os
try:
unicode # Python 2
except NameError:
unicode = str # Python 3
class COCO:
def __init__(self, annotation_file=None):
"""
Constructor of Microsoft COCO helper class for reading and visualizing annotations.
:param annotation_file (str): location of annotation file
:param image_folder (str): location to the folder that hosts images.
:return:
"""
# load dataset
self.dataset = {}
self.anns = []
self.imgToAnns = {}
self.catToImgs = {}
self.imgs = {}
self.cats = {}
if not annotation_file == None:
print('loading annotations into memory...')
tic = time.time()
dataset = json.load(open(annotation_file, 'r'))
print('Done (t=%0.2fs)'%(time.time()- tic))
self.dataset = dataset
self.createIndex()
def createIndex(self):
# create index
print('creating index...')
anns = {}
imgToAnns = {}
catToImgs = {}
cats = {}
imgs = {}
if 'annotations' in self.dataset:
imgToAnns = {ann['image_id']: [] for ann in self.dataset['annotations']}
anns = {ann['id']: [] for ann in self.dataset['annotations']}
for ann in self.dataset['annotations']:
imgToAnns[ann['image_id']] += [ann]
anns[ann['id']] = ann
if 'images' in self.dataset:
imgs = {im['id']: {} for im in self.dataset['images']}
for img in self.dataset['images']:
imgs[img['id']] = img
if 'categories' in self.dataset:
cats = {cat['id']: [] for cat in self.dataset['categories']}
for cat in self.dataset['categories']:
cats[cat['id']] = cat
catToImgs = {cat['id']: [] for cat in self.dataset['categories']}
if 'annotations' in self.dataset:
for ann in self.dataset['annotations']:
catToImgs[ann['category_id']] += [ann['image_id']]
print('index created!')
# create class members
self.anns = anns
self.imgToAnns = imgToAnns
self.catToImgs = catToImgs
self.imgs = imgs
self.cats = cats
def info(self):
"""
Print information about the annotation file.
:return:
"""
for key, value in self.dataset['info'].items():
print('%s: %s'%(key, value))
def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None):
"""
Get ann ids that satisfy given filter conditions. default skips that filter
:param imgIds (int array) : get anns for given imgs
catIds (int array) : get anns for given cats
areaRng (float array) : get anns for given area range (e.g. [0 inf])
iscrowd (boolean) : get anns for given crowd label (False or True)
:return: ids (int array) : integer array of ann ids
"""
imgIds = imgIds if type(imgIds) == list else [imgIds]
catIds = catIds if type(catIds) == list else [catIds]
if len(imgIds) == len(catIds) == len(areaRng) == 0:
anns = self.dataset['annotations']
else:
if not len(imgIds) == 0:
# this can be changed by defaultdict
lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns]
anns = list(itertools.chain.from_iterable(lists))
else:
anns = self.dataset['annotations']
anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds]
anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]]
if not iscrowd == None:
ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd]
else:
ids = [ann['id'] for ann in anns]
return ids
def getCatIds(self, catNms=[], supNms=[], catIds=[]):
"""
filtering parameters. default skips that filter.
:param catNms (str array) : get cats for given cat names
:param supNms (str array) : get cats for given supercategory names
:param catIds (int array) : get cats for given cat ids
:return: ids (int array) : integer array of cat ids
"""
catNms = catNms if type(catNms) == list else [catNms]
supNms = supNms if type(supNms) == list else [supNms]
catIds = catIds if type(catIds) == list else [catIds]
if len(catNms) == len(supNms) == len(catIds) == 0:
cats = self.dataset['categories']
else:
cats = self.dataset['categories']
cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms]
cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms]
cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds]
ids = [cat['id'] for cat in cats]
return ids
def getImgIds(self, imgIds=[], catIds=[]):
'''
Get img ids that satisfy given filter conditions.
:param imgIds (int array) : get imgs for given ids
:param catIds (int array) : get imgs with all given cats
:return: ids (int array) : integer array of img ids
'''
imgIds = imgIds if type(imgIds) == list else [imgIds]
catIds = catIds if type(catIds) == list else [catIds]
if len(imgIds) == len(catIds) == 0:
ids = self.imgs.keys()
else:
ids = set(imgIds)
for i, catId in enumerate(catIds):
if i == 0 and len(ids) == 0:
ids = set(self.catToImgs[catId])
else:
ids &= set(self.catToImgs[catId])
return list(ids)
def loadAnns(self, ids=[]):
"""
Load anns with the specified ids.
:param ids (int array) : integer ids specifying anns
:return: anns (object array) : loaded ann objects
"""
if type(ids) == list:
return [self.anns[id] for id in ids]
elif type(ids) == int:
return [self.anns[ids]]
def loadCats(self, ids=[]):
"""
Load cats with the specified ids.
:param ids (int array) : integer ids specifying cats
:return: cats (object array) : loaded cat objects
"""
if type(ids) == list:
return [self.cats[id] for id in ids]
elif type(ids) == int:
return [self.cats[ids]]
def loadImgs(self, ids=[]):
"""
Load anns with the specified ids.
:param ids (int array) : integer ids specifying img
:return: imgs (object array) : loaded img objects
"""
if type(ids) == list:
return [self.imgs[id] for id in ids]
elif type(ids) == int:
return [self.imgs[ids]]
def showAnns(self, anns):
"""
Display the specified annotations.
:param anns (array of object): annotations to display
:return: None
"""
if len(anns) == 0:
return 0
if 'segmentation' in anns[0]:
datasetType = 'instances'
elif 'caption' in anns[0]:
datasetType = 'captions'
if datasetType == 'instances':
ax = plt.gca()
polygons = []
color = []
for ann in anns:
c = np.random.random((1, 3)).tolist()[0]
if type(ann['segmentation']) == list:
# polygon
for seg in ann['segmentation']:
poly = np.array(seg).reshape((len(seg)/2, 2))
polygons.append(Polygon(poly, True,alpha=0.4))
color.append(c)
else:
# mask
t = self.imgs[ann['image_id']]
if type(ann['segmentation']['counts']) == list:
rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
else:
rle = [ann['segmentation']]
m = mask.decode(rle)
img = np.ones( (m.shape[0], m.shape[1], 3) )
if ann['iscrowd'] == 1:
color_mask = np.array([2.0,166.0,101.0])/255
if ann['iscrowd'] == 0:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack( (img, m*0.5) ))
p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
ax.add_collection(p)
elif datasetType == 'captions':
for ann in anns:
print(ann['caption'])
def loadRes(self, resFile):
"""
Load result file and return a result api object.
:param resFile (str) : file name of result file
:return: res (obj) : result api object
"""
res = COCO()
res.dataset['images'] = [img for img in self.dataset['images']]
# res.dataset['info'] = copy.deepcopy(self.dataset['info'])
# res.dataset['licenses'] = copy.deepcopy(self.dataset['licenses'])
print('Loading and preparing results... ')
tic = time.time()
anns = json.load(open(resFile))
assert type(anns) == list, 'results in not an array of objects'
annsImgIds = [ann['image_id'] for ann in anns]
assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \
'Results do not correspond to current coco set'
if 'caption' in anns[0]:
imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns])
res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds]
for id, ann in enumerate(anns):
ann['id'] = id+1
elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
for id, ann in enumerate(anns):
bb = ann['bbox']
x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]]
if not 'segmentation' in ann:
ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
ann['area'] = bb[2]*bb[3]
ann['id'] = id+1
ann['iscrowd'] = 0
elif 'segmentation' in anns[0]:
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
for id, ann in enumerate(anns):
# now only support compressed RLE format as segmentation results
ann['area'] = mask.area([ann['segmentation']])[0]
if not 'bbox' in ann:
ann['bbox'] = mask.toBbox([ann['segmentation']])[0]
ann['id'] = id+1
ann['iscrowd'] = 0
print('DONE (t=%0.2fs)'%(time.time()- tic))
res.dataset['annotations'] = anns
res.createIndex()
return res
def download( self, tarDir = None, imgIds = [] ):
'''
Download COCO images from mscoco.org server.
:param tarDir (str): COCO results directory name
imgIds (list): images to be downloaded
:return:
'''
if tarDir is None:
print('Please specify target directory')
return -1
if len(imgIds) == 0:
imgs = self.imgs.values()
else:
imgs = self.loadImgs(imgIds)
N = len(imgs)
if not os.path.exists(tarDir):
os.makedirs(tarDir)
for i, img in enumerate(imgs):
tic = time.time()
fname = os.path.join(tarDir, img['file_name'])
if not os.path.exists(fname):
urllib.urlretrieve(img['coco_url'], fname)
print('downloaded %d/%d images (t=%.1fs)'%(i, N, time.time()- tic))
从COCO API的源码中可以看出,COCO对象包含了如下一些基本的数据和方法:
# load dataset
self.dataset = {} #原始的json文件
self.anns = [] #所有的"annotations"
self.imgToAnns = {}#每张图像和"annotations"之间的映射,即每张图像的标注信息,如分割信息,检测框信息等等。
self.catToImgs = {}#每张图像和"category"之间的映射,即每张图像的物体类别
self.imgs = {} #所有的图像文件的列表
self.cats = {} #所有的"category"信息的列表,即每张图像的class类别标签信息
要想彻底理解上述的各个字段是什么意思,我们需要去看一眼原始标签文件,instances_train2017.json和instances_val2017.json的内部格式,此处截取一部分展示如下:
{
"info":{
"description": "COCO 2017 Dataset","url": "http://cocodataset.org","version": "1.0","year": 2017,"contributor": "COCO Consortium",
"date_created": "2017/09/01"
},
"licenses": [
{"url": "http://creativecommons.org/licenses/by-nc-sa/2.0/","id": 1,"name": "Attribution-NonCommercial-ShareAlike License"},
{"url": "http://creativecommons.org/licenses/by-nc/2.0/","id": 2,"name": "Attribution-NonCommercial License"},
{"url": "http://creativecommons.org/licenses/by-nc-nd/2.0/","id": 3,"name": "Attribution-NonCommercial-NoDerivs License"}
],
"images": [
{"license": 4,"file_name": "000000397133.jpg","coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg",
"height": 427,"width": 640,"date_captured": "2013-11-14 17:02:52","flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg",
"id": 397133}
,{"license": 1,"file_name": "000000037777.jpg","coco_url": "http://images.cocodataset.org/val2017/000000037777.jpg",
"height": 230,"width": 352,"date_captured": "2013-11-14 20:55:31","flickr_url": "http://farm9.staticflickr.com/8429/7839199426_f6d48aa585_z.jpg",
"id": 37777}
]
"annotations":
[
{"segmentation": [
[510.66,423.01,511.72,420.03,510.45,416.0,510.34,413.02,510.77,410.26,510.77,407.5,510.34,405.16,511.51,402.83,511.41,400.49,510.24,398.16,509.39,397.31,504.61,399.22,502.17,399.64,500.89,401.66,500.47,402.08,499.09,401.87,495.79,401.98,490.59,401.77,488.79,401.77,485.39,398.58,483.9,397.31,481.56,396.35,478.48,395.93,476.68,396.03,475.4,396.77,473.92,398.79,473.28,399.96,473.49,401.87,474.56,403.47,473.07,405.59,473.39,407.71,476.68,409.41,479.23,409.73,481.56,410.69,480.4,411.85,481.35,414.93,479.86,418.65,477.32,420.03,476.04,422.58,479.02,422.58,480.29,423.01,483.79,419.93,486.66,416.21,490.06,415.57,492.18,416.85,491.65,420.24,492.82,422.9,493.56,424.39,496.43,424.6,498.02,423.01,498.13,421.31,497.07,420.03,497.07,415.15,496.33,414.51,501.1,411.96,502.06,411.32,503.02,415.04,503.33,418.12,501.1,420.24,498.98,421.63,500.47,424.39,505.03,423.32,506.2,421.31,507.69,419.5,506.31,423.32,510.03,423.01,510.45,423.01]
],
"area": 702.1057499999998,
"iscrowd": 0,
"image_id": 289343,
"bbox": [473.07,395.93,38.65,28.67],
"category_id": 18,"id": 1768
}
{"segmentation":
{
"counts": [272,2,4,4,4,4,2,9,1,2,16,43,143,24,5,8,16,44,141,25,8,5,17,44,140,26,10,2,17,45,129,4,5,27,24,5,1,45,127,38,23,52,125,40,22,53,123,43,20,54,122,46,18,54,121,54,12,53,119,57,11,53,117,59,13,51,117,59,13,51,117,60,11,52,117,60,10,52,118,60,9,53,118,61,8,52,119,62,7,52,119,64,1,2,2,51,120,120,120,101,139,98,142,96,144,93,147,90,150,87,153,85,155,82,158,76,164,66,174,61,179,57,183,54,186,52,188,49,191,47,193,21,8,16,195,20,13,8,199,18,222,17,223,16,224,16,224,15,225,15,225,15,225,15,225,15,225,15,225,15,225,15,225,15,225,14,226,14,226,14,39,1,186,14,39,3,184,14,39,4,183,13,40,6,181,14,39,7,180,14,39,9,178,14,39,10,177,14,39,11,176,14,38,14,174,14,36,19,171,15,33,32,160,16,30,35,159,18,26,38,158,19,23,41,157,20,19,45,156,21,15,48,156,22,10,53,155,23,9,54,154,23,8,55,154,24,7,56,153,24,6,57,153,25,5,57,153,25,5,58,152,25,4,59,152,26,3,59,152,26,3,59,152,27,1,60,152,27,1,60,152,86,154,80,160,79,161,42,8,29,161,41,11,22,2,3,161,40,13,18,5,3,161,40,15,2,5,8,7,2,161,40,24,6,170,35,30,4,171,34,206,34,41,1,164,34,39,3,164,34,37,5,164,34,35,10,161,36,1,3,28,17,155,41,27,16,156,41,26,17,156,41,26,16,157,27,4,10,25,16,158,27,6,8,11,2,12,6,2,7,159,27,7,14,3,4,19,6,160,26,8,22,18,5,161,26,8,22,18,4,162,26,8,23,15,4,164,23,11,23,11,7,165,19,17,22,9,6,167,19,22,18,8,3,170,18,25,16,7,1,173,17,28,15,180,17,30,12,181,16,34,6,184,15,225,14,226,13,227,12,228,11,229,10,230,9,231,9,231,9,231,9,231,8,232,8,232,8,232,8,232,8,232,8,232,7,233,7,233,7,233,7,233,8,232,8,232,8,232,9,231,9,231,9,231,10,230,10,230,11,229,13,227,14,226,16,224,17,223,19,221,23,217,31,3,5,201,39,201,39,201,39,201,39,201,39,201,40,200,40,200,41,199,41,199,41,199,22,8,12,198,22,12,8,198,22,14,6,198,22,15,6,197,22,16,5,197,22,17,5,196,22,18,4,196,22,19,4,195,22,19,5,194,22,20,4,194,25,21,1,193,27,213,29,211,30,210,35,6,6,193,49,191,50,190,50,190,51,189,51,189,52,188,53,187,53,187,54,186,54,186,54,186,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,55,185,28,1,26,185,23,11,21,185,20,17,17,186,18,21,15,186,16,23,14,187,14,25,14,187,14,26,12,188,14,28,10,188,14,226,14,226,16,224,17,223,19,221,20,220,22,218,24,18,3,12,3,180,25,10,1,4,6,10,6,178,28,7,12,8,8,177,49,3,12,176,65,175,67,173,69,171,53,3,14,170,37,20,9,4,1,169,36,21,8,175,35,22,7,176,34,23,7,176,34,23,6,177,35,22,6,177,35,22,8,175,35,23,9,173,35,205,36,204,39,201,43,197,48,36,1,155,48,35,3,154,49,33,5,154,48,32,6,155,49,27,10,155,51,24,11,154,54,21,11,155,56,19,11,155,56,18,11,156,56,17,11,157,56,16,12,157,56,14,13,159,56,12,13,160,61,5,14,162,78,165,75,167,73,168,72,170,70,171,69,173,67,176,64,179,61,182,58,183,57,185,54,187,53,188,51,191,49,192,47,195,45,196,43,198,42,199,40,201,38,203,36,205,34,207,32,210,28,213,26,216,22,221,16,228,8,10250],
"size": [240,320]
},
"area": 18419,
"iscrowd": 1,
"image_id": 448263,
"bbox": [1,0,276,122],
"category_id": 1,
"id": 900100448263}
]
"categories": [
{"supercategory": "person","id": 1,"name": "person"}
,{"supercategory": "vehicle","id": 2,"name": "bicycle"}
]
简单总结如下:
假定读取json文件到dataset这个变量下面,那么
1. 图像的文件名(注意是补零到长度为12之后文件名,实际文件名要去点前面的0)都存在dataset["images"]这个字段下面。
2.从dataset["images"]中可以获取到图像的image_id,然后基于image_id可以去dataset["annotations"]中获取到图像的标注信息,
如分割(segmentation),检测(bbox)等等,同时还可以在dataset["annotations"]中得到category_id。
3.基于category_id可以去dataset["categories"]中取出该图像所对应的类别(class),COCO中又81种类别的数据,这可能的类别包括如下81种:
['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck',
'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat',
'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse',
'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'],使用者根据自己的需要,选出自己需要的类别即可,比如做人体检测就只需要选出person类别的数据作为正样本。