在上一篇文章中,我和你介绍了 InnoDB 索引的数据结构模型,今天我们再继续聊聊跟 MySQL 索引有关的概念。
在开始这篇文章之前,我们先来看一下这个问题:
在下面这个表 T 中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?
下面是这个表的初始化语句。
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;
insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
现在,我们一起来看看这条 SQL 查询语句的执行流程:
- 在 k 索引树上找到 k=3 的记录,取得 ID = 300;
- 再到 ID 索引树查到 ID=300 对应的 R3;
- 在 k 索引树取下一个值 k=5,取得 ID=500;
- 再回到 ID 索引树查到 ID=500 对应的 R4;
- 在 k 索引树取下一个值 k=6,不满足条件,循环结束。
在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)。
在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?
覆盖索引
如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
需要注意的是,在引擎内部使用覆盖索引在索引 k 上其实读了三个记录,R3~R5(对应的索引 k 上的记录项),但是对于 MySQL 的 Server 层来说,它就是找引擎拿到了两条记录,因此 MySQL 认为扫描行数是 2。
基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?
假设这个市民表的定义是这样的:
CREATE TABLE `tuser` (
`id` int(11) NOT NULL,
`id_card` varchar(32) DEFAULT NULL,
`name` varchar(32) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`ismale` tinyint(1) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `id_card` (`id_card`),
KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB
我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?
如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。
当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务 DBA,或者称为业务数据架构师的工作。
最左前缀原则
看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?
这里,我先和你说结论吧。B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。
为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。
可以看到,索引项是按照索引定义里面出现的字段顺序排序的。
当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果。
如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是"where name like ‘张 %’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止。
可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。
基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。
这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
所以现在你知道了,这段开头的问题里,我们要为高频请求创建 (身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。
那么,如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。
这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段索引。
索引下推
上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?
我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的:
mysql> select * from tuser where name like '张 %' and age=10 and ismale=1;
你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3。当然,这还不错,总比全表扫描要好。
然后呢?
当然是判断其他条件是否满足。
在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。
而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
图 3 和图 4,是这两个过程的执行流程图。
在图 3 和 4 这两个图里面,每一个虚线箭头表示回表一次。
图 3 中,在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。
图 4 跟图 3 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。
小结
这篇文章,继续讨论了数据库索引的概念,包括了覆盖索引、前缀索引、索引下推。你可以看到,在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一。我们在使用数据库的时候,尤其是在设计表结构时,也要以减少资源消耗作为目标。