一、基础代码准备
建立一个实体类,该实体类有五个属性。下面的代码使用了lombok的注解Data、AllArgsConstructor,这样我们就不用写get、set方法和全参构造函数了。lombok会帮助我们在编译期生成这些模式化的代码。
@Data @AllArgsConstructor public class Employee { private Integer id; private Integer age; //年龄 private String gender; //性别 private String firstName; private String lastName; }
写一个测试类,这个测试类的内容也很简单,新建十个Employee 对象
public class StreamFilterPredicate { public static void main(String[] args){ Employee e1 = new Employee(1,23,"M","Rick","Beethovan"); Employee e2 = new Employee(2,13,"F","Martina","Hengis"); Employee e3 = new Employee(3,43,"M","Ricky","Martin"); Employee e4 = new Employee(4,26,"M","Jon","Lowman"); Employee e5 = new Employee(5,19,"F","Cristine","Maria"); Employee e6 = new Employee(6,15,"M","David","Feezor"); Employee e7 = new Employee(7,68,"F","Melissa","Roy"); Employee e8 = new Employee(8,79,"M","Alex","Gussin"); Employee e9 = new Employee(9,15,"F","Neetu","Singh"); Employee e10 = new Employee(10,45,"M","Naveen","Jain"); Listemployees = Arrays.asList(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10); List filtered = employees.stream() .filter(e -> e.getAge() > 70 && e.getGender().equals("M")) .collect(Collectors.toList()); System.out.println(filtered); } }
需要注意的是上面的filter传入了lambda表达式(之前的章节我们已经讲过了),表达过滤年龄大于70并且男性的Employee员工。输出如下:
[Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin)]
二、什么是谓词逻辑?
下面要说我们的重点了,通过之前的章节的讲解,我们已经知道lambda表达式表达的是一个匿名接口函数的实现。那具体到Stream.filter()中,它表达的是什么呢?看下图:可以看出它表达的是一个Predicate接口,在英语中这个单词的意思是:谓词。
什么是谓词?(百度百科)
什么是谓词逻辑?
WHERE 和 AND 限定了主语employee是什么,那么WHERE和AND语句所代表的逻辑就是谓词逻辑
SELECT * FROM employee WHERE age > 70 AND gender = 'M'
三、谓词逻辑的复用
通常情况下,filter函数中lambda表达式为一次性使用的谓词逻辑。如果我们的谓词逻辑需要被多处、多场景、多代码中使用,通常将它抽取出来单独定义到它所限定的主语实体中。 比如:将下面的谓词逻辑定义在Employee实体class中。
public static PredicateageGreaterThan70 = x -> x.getAge() >70; public static Predicate genderM = x -> x.getGender().equals("M");
3.1.and语法(并集)
Listfiltered = employees.stream() .filter(Employee.ageGreaterThan70.and(Employee.genderM)) .collect(Collectors.toList());
输出如下:
[Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin)]
3.2.or语法(交集)
Listfiltered = employees.stream() .filter(Employee.ageGreaterThan70.or(Employee.genderM)) .collect(Collectors.toList());
输出如下:实际上就是年龄大于70的和所有的男性(由于79的那位也是男性,所以就是所有的男性)
[Employee(id=1, age=23, gender=M, firstName=Rick, lastName=Beethovan), Employee(id=3, age=43, gender=M, firstName=Ricky, lastName=Martin), Employee(id=4, age=26, gender=M, firstName=Jon, lastName=Lowman), Employee(id=6, age=15, gender=M, firstName=David, lastName=Feezor), Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin), Employee(id=10, age=45, gender=M, firstName=Naveen, lastName=Jain)]
3.3.negate语法(取反)
Listfiltered = employees.stream() .filter(Employee.ageGreaterThan70.or(Employee.genderM).negate()) .collect(Collectors.toList());
输出如下:把上一小节代码的结果取反,实际上就是所有的女性
[Employee(id=2, age=13, gender=F, firstName=Martina, lastName=Hengis), Employee(id=5, age=19, gender=F, firstName=Cristine, lastName=Maria), Employee(id=7, age=68, gender=F, firstName=Melissa, lastName=Roy), Employee(id=9, age=15, gender=F, firstName=Neetu, lastName=Singh)]
以上就是java基础理论Stream的Filter与谓词逻辑的详细内容,更多关于java Stream的Filter与谓词逻辑的资料请关注脚本之家其它相关文章!