解决python读取几千万行的大表内存问题

Python导数据的时候,需要在一个大表上读取很大的结果集。

如果用传统的方法,Python的内存会爆掉,传统的读取方式默认在内存里缓存下所有行然后再处理,内存容易溢出

解决的方法:

  1. 使用SSCursor(流式游标),避免客户端占用大量内存。(这个cursor实际上没有缓存下来任何数据,它不会读取所有所有到内存中,它的做法是从储存块中读取记录,并且一条一条返回给你。)

  2. 使用迭代器而不用fetchall,即省内存又能很快拿到数据。

import MySQLdb
import MySQLdb.cursors

conn = MySQLdb.connect(host='ip地址', user='用户名', passwd='密码', db='数据库名', port=3306, charset='utf8', cursorclass = MySQLdb.cursors.SSCursor)
cur = conn.cursor()
cur.execute("SELECT * FROM bigtable");
while True:
    row = cur.fetchone()
    if not row:break
    print(row)
 
cur.close()
conn.close()

需要注意的是:

  1. 因为SSCursor是没有缓存的游标,结果集只要没取完,这个conn是不能再处理别的sql,包括另外生成一个cursor也不行的。

如果需要干别的,请另外再生成一个连接对象。

  1. 每次读取后处理数据要快,不能超过60s,否则mysql将会断开这次连接,也可以修改 SET NET_WRITE_TIMEOUT = xx 来增加超时间隔。

你可能感兴趣的:(解决python读取几千万行的大表内存问题)