你这个问题本来就问的很模糊,你是想问神经网络的过拟合变现什么样还是为什么出现过拟合呢。
为此针对于第一个问题,神经网络的过拟合与支持向量机、高斯混合模型等建模方法的过拟合类似,表现为针对于训练数据集的建模效果很好,而对于测试数据集的建模效果很差,因为过于强大的学习能力是的预测模型中的噪声将有用信息湮没了,致使泛化能力很差。
针对于第二个问题,出现上述现象的主要原因在于隐层节点数太多(隐层节点数越多,学习能力越强),使得预测模型在训练时候将训练数据集中的噪声也挖掘出来了,也就是噪声将有用信息湮没了。
所以在使用神经网络进行建模时一定要处理好模型过拟合的问题,可以一方面增加数据的样本集,另一方面采用交叉验证选择合适的隐层节点数,在精度与泛化能力之间做一个权衡,最常用的方法就是增加正则化项,一定程度上可以防止模型的过拟合问题。
(+机器学习算法与Python学习)
谷歌人工智能写作项目:爱发猫
你这个问题本来就问的很模糊,你是想问神经网络的过拟合变现什么样还是为什么出现过拟合呢。
为此针对于第一个问题,神经网络的过拟合与支持向量机、高斯混合模型等建模方法的过拟合类似,表现为针对于训练数据集的建模效果很好,而对于测试数据集的建模效果很差,因为过于强大的学习能力是的预测模型中的噪声将有用信息湮没了,致使泛化能力很差。
针对于第二个问题,出现上述现象的主要原因在于隐层节点数太多(隐层节点数越多,学习能力越强),使得预测模型在训练时候将训练数据集中的噪声也挖掘出来了,也就是噪声将有用信息湮没了。
所以在使用神经网络进行建模时一定要处理好模型过拟合的问题,可以一方面增加数据的样本集,另一方面采用交叉验证选择合适的隐层节点数,在精度与泛化能力之间做一个权衡,最常用的方法就是增加正则化项,一定程度上可以防止模型的过拟合问题。
(+机器学习算法与Python学习)
原理如下:二者的机制是有差别的。过拟合的原因,就是使用了对问题而言过于复杂的表述,所以缓解过拟合的基本方法就是降低对问题表述的复杂度。
BN实现这一点的机制是尽量在一个更平滑的解子空间中寻找问题的解,强调的是处理问题的过程的平滑性,隐含的思路是更平滑的解的泛化能力更好,Dropout是强调的鲁棒性,即要求解对网络配置的扰动不敏感,隐含思路是更鲁棒的解泛化能力更好。
从这个机制看,Dropout对过拟合的控制机制实际上更直接更表面化更简单粗暴,而BN则要间接一点,但是更底层更本质。
但是二者的机制有差别又有重叠,平滑和鲁棒二者常常是一致的,但又不完全一致,不能简单说哪个效果更好。
但从机制上看,BN的思想在统计上似乎应该更好一点,但是由于BN用于约束平滑性的手段本身并不完备,只是选用了一种控制模式,所以并不能完全体现其控制平滑性的思想,所以BN对泛化性能的实际影响也不是非常大。
过拟合的定义就是指选择的模型所包含的参数过多(模型复杂度过大),导致这个模型对于已知数据的预测能力好,但是对未知数据的预测能力差。dropout就是做剪枝,自然降低了模型复杂度减少了过拟合。
batchnormlization一般来说是用来加速的和解决一些极端的梯度的情况,如果说强行说可以减少过拟合的话,大概就是引入了噪声,相当于做了数据增强(给数据加噪声)。
你好,遗传算法在一定程度上可以防止过拟合。遗传算法主要是针对神经网络的优化的。他是通过交叉和突变来实现对神经网络的优化。过拟合其实是说模型太过严格,泛化不够。容错性不够好。
因为遗传算法通过交叉和突变,他可以提升模型的泛化能力。
深度学习:过拟合为了得到一致假设而使假设变得过度复杂称为过拟合。
想像某种学习算法产生了一个过拟合的分类器,这个分类器能够百分之百的正确分类样本数据(即再拿样本中的文档来给它,它绝对不会分错),但也就为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规则如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别。
标准定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。
—-《MachineLearning》TomM.Mitchell假设我们用深度学习来判断西瓜,过拟合会使得你判断西瓜更加严厉,导致在某些西瓜数据上与你准备的数据有些出入(差别并不会太大),从而结果判定不是西瓜。
。。
-----------------深度学习防止过拟合的方法过拟合即在训练误差很小,而泛化误差很大,因为模型可能过于的复杂,使其”记住”了训练样本,然而其泛化误差却很高,在传统的机器学习方法中有很大防止过拟合的方法,同样这些方法很多也适合用于深度学习中,同时深度学习中又有一些独特的防止过拟合的方法,下面对其进行简单的梳理.1.参数范数惩罚范数正则化是一种非常普遍的方法,也是最常用的方法,假如优化:minObj(θ)=L(y,f(x))+αG(θ)其中L为经验风险,其为在训练样本上的误差,而G为对参数的惩罚,也叫结构风险.α是平衡两者,如果太大则对应的惩罚越大,如过太小,甚至接近与0,则没有惩罚.最常用的范数惩罚为L1,L2正则化,L1又被成为Lasso:||w||1=|w1|+|w2|+...即绝对值相加,其趋向于是一些参数为0.可以起到特征选择的作用.L2正则化为:||w||2=w12+w22+...−−−−−−−−−−−−√其趋向与,使权重很小.其又成为ridge.关于更多可以参考:机器学习中的范数规则化之(一)L0、L1与L2范数2.数据增强让模型泛化的能力更好的最好办法就是使用更多的训练数据进行训练,但是在实践中,我们拥有的数据是有限的,解决这一问题可以人为的创造一些假数据添加到训练集中.一个具体的例子:在AlexNet中,将256*256图像随机的截取224*224大小,增加了许多的训练样本,同时可以对图像进行左右翻转,增加样本的个数,实验的结果可以可降低1%的误差.在神经网络中输入噪声也可以看做是数据增强的一种方式.3.提前终止如下图所示(图片来源deeplearning),当随着模型的能力提升,训练集的误差会先减小再增大,这样可以提前终止算法减缓过拟合现象.关于算法的具体流程参考deeplearning.提前终止是一种很常用的缓解过拟合的方法,如在决策树的先剪枝的算法,提前终止算法,使得树的深度降低,防止其过拟合.4.参数绑定与参数共享在卷积神经网络CNN中(计算机视觉与卷积神经网络),卷积层就是其中权值共享的方式,一个卷积核通过在图像上滑动从而实现共享参数,大幅度减少参数的个数,用卷积的形式是合理的,因为对于一副猫的图片来说,右移一个像素同样还是猫,其具有局部的特征.这是一种很好的缓解过拟合现象的方法.同样在RNN中用到的参数共享,在其整条时间链上可以进行参数的共享,这样才使得其能够被训练.5.bagging和其他集成方法其实bagging的方法是可以起到正则化的作用,因为正则化就是要减少泛化误差,而bagging的方法可以组合多个模型起到减少泛化误差的作用.在深度学习中同样可以使用此方法,但是其会增加计算和存储的成本.6.DropoutDropout提供了一种廉价的Bagging集成近似,能够训练和评估指数级数量的神经网络。
dropout可以随机的让一部分神经元失活,这样仿佛是bagging的采样过程,因此可以看做是bagging的廉价的实现.但是它们训练不太一样,因为bagging,所有的模型都是独立的,而dropout下所有模型的参数是共享的.通常可以这样理解dropout:假设我们要判别一只猫,有一个神经元说看到有毛就是猫,但是如果我让这个神经元失活,它还能判断出来是猫的话,这样就比较具有泛化的能力,减轻了过拟合的风险.7.辅助分类节点(auxiliaryclassifiers)在GoogleInceptionV1中,采用了辅助分类节点的策略,即将中间某一层的输出用作分类,并按一个较小的权重加到最终的分类结果中,这样相当于做了模型的融合,同时给网络增加了反向传播的梯度信号,提供了额外的正则化的思想.8.BatchNormalization在GoogleInceptionV2中所采用,是一种非常有用的正则化方法,可以让大型的卷积网络训练速度加快很多倍,同事收敛后分类的准确率也可以大幅度的提高.BN在训练某层时,会对每一个mini-batch数据进行标准化(normalization)处理,使输出规范到N(0,1)的正太分布,减少了Internalconvariateshift(内部神经元分布的改变),传统的深度神经网络在训练是,每一层的输入的分布都在改变,因此训练困难,只能选择用一个很小的学习速率,但是每一层用了BN后,可以有效的解决这个问题,学习速率可以增大很多倍.未完待续…参考资料:deeplearningtensorflow实战机器学习中的范数规则化之(一)L0、L1与L2范数。
欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训练误差和测试误差之间的差距太大。通过调整模型的容量(capacity),我们可以控制模型是否偏向于过拟合或者欠拟合。
通俗地,模型的容量是指其拟合各种函数的能力。容量低的模型可能很难拟合训练集。容量高的模型可能会过拟合,因为记住了不适用于测试集的训练集性质。
欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训练误差和测试误差之间的差距太大。考虑过多,超出自变量的一般含义维度,过多考虑噪声,会造成过拟合。
可以认为预测准确率、召回率都比理论上最佳拟合函数低很多,则为欠拟合。
简介人工神经网络按其模型结构大体可以分为前馈型网络(也称为多层感知机网络)和反馈型网络(也称为Hopfield网络)两大类,前者在数学上可以看作是一类大规模的非线性映射系统,后者则是一类大规模的非线性动力学系统。
按照学习方式,人工神经网络又可分为有监督学习、非监督和半监督学习三类;按工作方式则可分为确定性和随机性两类;按时间特性还可分为连续型或离散型两类,等等。