RabbitMQ常用五种模型

1、引入rabbitmq的客户端jar包



  com.rabbitmq

  amqp-client

  5.6.0

2、rabbitmq的模型

第一种模型直连(直连)

P:生产者,发送消息的程序;

C:消费者,消息的接收者,会一直等待消息的到来;

queue:消息队列,类似一个邮箱,可以缓存消息;生产者向其中投递消息,消费者从其中取出消息。

 

创建rabbitmq的链接工具类

public class RabbitUtil {

private static ConnectionFactory connectionFactory;

static{

    //创建mq的连接工厂

    connectionFactory = new ConnectionFactory();

    //设置主机

    connectionFactory.setHost("00.00.00.00");

    //设置端口

    connectionFactory.setPort(5672);

    //设置虚拟主机

    connectionFactory.setVirtualHost("/athome");

    //设置用户名和密码

    connectionFactory.setUsername("test");

    connectionFactory.setPassword("123456");

}

public static Connection getConnection() {

    Connection connection = null;

    try {

        connection = connectionFactory.newConnection();

    } catch (IOException e) {

        e.printStackTrace();

    } catch (TimeoutException e) {

        e.printStackTrace();

    }

    return connection;

}


    public static void close(Channel channel,Connection connection){

        try {

            if(channel!=null) channel.close();

            if(connection !=null) connection.close();

        } catch (IOException e) {

            e.printStackTrace();

        } catch (TimeoutException e) {

            e.printStackTrace();

        }

    }

}

消息生产者:

public class Producer {

    @Test

    public void test() throws IOException, TimeoutException {

        Connection connection = RabbitUtil.getConnection();

        //获取连接中的channel

        Channel channel = connection.createChannel();

        //通道绑定对应消息队列

        //1、队列名称,如果不存在自动创建

        //2、durable 用来定义队列特性是否要持久化 ,true 是 false 否  当rabbitmq重启后,队列全部丢失

        //3、exclusive 是否独占队列 true 是 false否

        //4、autodelete 是否在消费消息后删除队列 true 是 false 否

        //5、额外参数

        channel.queueDeclare("bb", true, false, true, null);

        //发布消息

        //1、交换机名称

        //2、队列名称 routingkey 决定了向哪个队列发送消息

        //3、消息的额外设置 MessageProperties.PERSISTENT_BASIC用来设置消息持久化

        //4、消息的具体内容跟

        channel.basicPublish("", "bb", MessageProperties.PERSISTENT_BASIC, "Hello word".getBytes());

        RabbitUtil.close(channel, connection);

    }

}

 表示将队列持久化到磁盘中了。

 A 表示消息被消费后 自动删除队列(前提是消费端断开连接)

 

消息消费者

public static void main(String[] args) throws IOException, TimeoutException {

    Connection connection = RabbitUtil.getConnection();

    Channel channel = connection.createChannel();

    channel.queueDeclare("hello", false, false, false, null);

    channel.basicConsume("", true, new DefaultConsumer(channel) {

        @Override

        public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

            System.out.println("..............消息体:" + new String(body));

        }

    });

}

第二种模型work queue(解决的问题是,当一个消费者消费速度小于生产者速度时,会产生消息堆积,因此采用增加消费者的数量,只要消费掉一个就从队列中删除一个,不会产生消息重复消费的问题)

 

任务模型,当消息处理比较耗时时,可能生产消息的速度远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。此时就可以使用work模型,让多个消费者绑定到一个队列,共同消费队列中的消息,队列中的消息一旦消费,就会消失,因此任务是不会被重复执行的。

P:生产者,任务的发布者;

c1:消费者1,领取任务并且完成任务,假设完成速度较慢;

c2: 消费者2,领取任务并且完成任务,假设完成速度较快;

消息生产者

public class ProducerWork {

    @Test

    public void test() throws IOException, TimeoutException {

        Connection connection = RabbitUtil.getConnection();

        //获取连接中的channel

        Channel channel = connection.createChannel();

        //通道绑定对应消息队列

        //1、队列名称,如果不存在自动创建

        //2、durable 用来定义队列特性是否要持久化 ,true 是 false 否  当rabbitmq重启后,队列全部丢失

        //3、exclusive 是否独占队列 true 是 false否

        //4、autodelete 是否在消费消息后删除队列 true 是 false 否

        //5、额外参数

        channel.queueDeclare("work", true, false, false, null);

        //发布消息

        //1、交换机名称

        //2、队列名称 routingkey 决定了向哪个队列发送消息

        //3、消息的额外设置 MessageProperties.PERSISTENT_BASIC用来设置消息持久化

        //4、消息的具体内容跟

        for (int i = 0; i < 10; i++) {

            channel.basicPublish("", "work", null, (i + "Hello word").getBytes());

        }

        RabbitUtil.close(channel, connection);

    }

}

消费者一

public class ConsumerWork1 {

    public static void main(String[] args) throws IOException, TimeoutException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        channel.queueDeclare("work", true, false, false, null);

        channel.basicConsume("work", true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("..............消息体:" + new String(body));

            }

        });

    }

}

消费者二

public class ConsumerWork2 {

    public static void main(String[] args) throws IOException, TimeoutException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        channel.queueDeclare("work", true, false, false, null);

        channel.basicConsume("work", true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("..............消息体:" + new String(body));

            }

        });

    }

}

 

 

RabbitMQ常用五种模型_第1张图片

RabbitMQ常用五种模型_第2张图片

可以看出消息被两个消费者平均消费;产生的问题就是性能差的机器会处理慢。

 

解决方式:

1、每次从队列只取出来一个消息

2、将自动提交改为手动提交,这样根据机器性能处理快的多处理;

public class ConsumerWork1 {

    public static void main(String[] args) throws IOException, TimeoutException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        //每次只处理一个消息

        channel.basicQos(1);

        channel.queueDeclare("work", true, false, false, null);

        //参数2是将自动提交改为手动提交

        channel.basicConsume("work", false, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("..............消息体:" + new String(body));

                //手动确认,参数1、手动确认标识;参数2、每次确认一个

                channel.basicAck(envelope.getDeliveryTag(), false);

            }

        });

    }

}

 

第三种消息模型fanout也称为广播

RabbitMQ常用五种模型_第3张图片

在广播模式下,消息发送流程是这样的:

可以有多个消费者;

每个消费者有自己的queue;

每个队列都要绑定到Exchange;

生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定;

交换机把消息发送给绑定过的所有队列;队列的消费者都能拿到消息,实现一条消息被多个消费者消费;

 

生产者

public class Producer {

    @Test

    public void test() throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        //通道声明指定交换机,参数1交换机名称,参数2交换机类型,fanout 广播

        channel.exchangeDeclare("logs", "fanout");

        //参数1交换机名称  参数2 路由key

        channel.basicPublish("logs", "", null, "交换机".getBytes());

        RabbitUtil.close(channel, connection);

    }

}

消费者

public class Consumer2 {

    public static void main(String[] args) throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        //通道绑定交换机

        channel.exchangeDeclare("logs", "fanout");

        //临时队列

        String queueName = channel.queueDeclare().getQueue();

        //绑定交换机和队列

        channel.queueBind(queueName, "logs", "");

        channel.basicConsume(queueName, true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("消费者二:" + new String(body));

            }

        });

    }

}

第四种模型:Routing

1、Routing之订阅模型-Direct(直连)

在fanout模式中,一条消息会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange.

在Direct模型下:

队列与交换机的绑定,不能任意绑定了,而是要指定一个RoutingKey;

消息的发送方在向Exchange发送消息时,也必须指定消息的RoutingKey;

Exchange不把消息交给每一个绑定的队列,而是根据消息的RoutingKey进行判断,只有队列的RoutingKey与消息的Routingkey完全一致,才会接受到消息;

 

流程:

RabbitMQ常用五种模型_第4张图片

 

生产者,向Exchange发送消息,发送消息时,会指定一个Routingkey;

Exchange,接收生产者的消息,然后把消息递交给与routingkey完全匹配的队列;

消费者1,其所在的队列指定了需要routingkey 为error的消息;

消费者2,其所在的队列指定了需要routinkey为info error warning的消息;

 

生产者:

消费者1

public class Consumer1 {

    public static void main(String[] args) throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        //对构建出来的通道声明一个交换机,类型为direct

        channel.exchangeDeclare("logs_direct", "direct");

        //创建临时队列

        String queue = channel.queueDeclare().getQueue();

        //队列和交换机绑定,消费路由类型为error的消息

        channel.queueBind(queue, "logs_direct", "error");

        channel.basicConsume(queue, true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("消费1-error到的消息为:" + new String(body));

            }

        });

    }

}

消费者2

public class Consumer2 {

    public static void main(String[] args) throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        //对构建出来的通道声明一个交换机,类型为direct

        channel.exchangeDeclare("logs_direct", "direct");

        //创建临时队列

        String queue = channel.queueDeclare().getQueue();

        //队列和交换机绑定,消费路由类型为error的消息,可以绑定多个路由

        channel.queueBind(queue, "logs_direct", "info");

        channel.queueBind(queue, "logs_direct", "warn");

        channel.queueBind(queue, "logs_direct", "error");

        channel.basicConsume(queue, true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("消费2-info到的消息为:" + new String(body));

            }

        });

    }

}

第五种模式routing之订阅模型-topic

Topic类型的Exchange与Direct相比,都是可以根据Routingkey把消息路由到不同的队列,只不过topic类型的exchange可以让队列在绑定routingkey的时候使用通配符,这种模型的routingkey一般都是由一个或多个单词组成,多个单词之间以“.”分割;

RabbitMQ常用五种模型_第5张图片

通配符

    *匹配一个单词;

    #匹配一个或多个词;

 

生产者

public class Producer {


    @Test

    public void test() throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        //绑定交换机和交换机类型

        channel.exchangeDeclare("topics", "topic");

        //声明路由

        String routingkey = "user.save.aa";

        //消息发送

        channel.basicPublish("topics", routingkey, null, "hello world".getBytes());

        RabbitUtil.close(channel, connection);

    }

}

消费者1

public class Consumer10 {

    public static void main(String[] args) throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        channel.exchangeDeclare("topics", "topic");

        String queue = channel.queueDeclare().getQueue();

        channel.queueBind(queue, "topics", "user.*");

        channel.basicConsume(queue, true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("消息10消费到的消息:" + new String(body));

            }

        });

    }

}

消费者2

public class Consumer11 {

    public static void main(String[] args) throws IOException {

        Connection connection = RabbitUtil.getConnection();

        Channel channel = connection.createChannel();

        channel.exchangeDeclare("topics", "topic");

        String queue = channel.queueDeclare().getQueue();

        channel.queueBind(queue, "topics", "user.#");

        channel.basicConsume(queue, true, new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {

                System.out.println("消息11消费到的消息:" + new String(body));

            }

        });





    }

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(MQ)