- 磁盘性能评价指标—IOPS和吞吐量
???? ??? Frank
一、磁盘I/O的概念I/O的概念,从字义来理解就是输入输出。操作系统从上层到底层,各个层次之间均存在I/O。比如,CPU有I/O,内存有I/O,VMM有I/O,底层磁盘上也有I/O,这是广义上的I/O。通常来讲,一个上层的I/O可能会产生针对磁盘的多个I/O,也就是说,上层的I/O是稀疏的,下层的I/O是密集的。磁盘的I/O,顾名思义就是磁盘的输入输出。输入指的是对磁盘写入数据,输出指的是从磁盘读
- 理论+实践,一文带你读懂线性回归的评价指标
木东居士
关于作者:饼干同学,某人工智能公司交付开发工程师/建模科学家。专注于AI工程化及场景落地,希望和大家分享成长中的专业知识与思考感悟。0x00前言:本篇内容是线性回归系列的第三篇。在《模型之母:简单线性回归&最小二乘法》、《模型之母:简单线性回归&最小二乘法》中我们学习了简单线性回归、最小二乘法,并完成了代码的实现。在结尾,我们抛出了一个问题:在之前的kNN算法(分类问题)中,使用分类准确度来评价算
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 机器学习实战----波士顿房价预测模型
永远偷渡不了的非洲人
机器学习机器学习sklearnpython
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- 海云安实力入选“未来新锐力量TOP30”企业
海云安
人工智能大数据
近日,由网络安全产业资讯媒体安全419主办的“FP30”(FuturePower30,未来新锐力量TOP30)计划结果正式出炉,海云安凭借领先的技术优势和企业综合实力成功入选“FP30”(FuturePower30,未来新锐力量TOP30)计划成员企业。本次“FP30”计划推出后受到广泛关注,报名期间共收到来自我国网络安全行业上百家企业的自荐。根据计划设置的企业评价指标,在经过专家顾问团的多轮严肃
- 显著性目标检测评价指标Smeasure, wFmeasure, MAE, adpEm, meanEm, maxFm
一只懒洋洋
人工智能机器学习
一、评价指标:Smeasure(StructureMeasure)结构度量是一种综合评估指标,用于评估预测的分割结果与真实分割之间的结构相似性。它考虑了分割结果的边缘连通性、区域完整性和边界偏移等因素,值越接近1表示分割结果与真实分割结构越相似。wFmeasure(WeightedF-measure)加权F-measure是精度和召回率的加权平均值,其中精度衡量了分割结果中正确分类的像素数量,而召
- 1.深度学习基础-模型评估指标
alstonlou
深度学习指南深度学习人工智能机器学习算法python
模型评估指标针对不同类型的任务,需要通过不同的模型评价指标进行评价,在实际应用中,可能需要结合具体任务和需求选择合适的评估方法。有监督学习回归任务回归任务模型的评估主要通过误差和拟合优度来进行,常用的指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)。在回归任务中,我们主要关注模型预测值与实际值之间的差异大小以及模型对数据整体变化的解释能力。以下是具体介绍
- 09基于粒子群优化BP神经网络数据回归预测算法PSO-BP【附Matlab源码】只讲代码不讲原理
机器不会学习CSJ
数据回归专栏算法神经网络回归机器学习matlab
文章目录一、粒子群优化算法二、BP神经网络核心代码三、完整过程1、读取数据2、划分数据3、数据归一化4、计算优化节点数量5、粒子群优化参数初始化6、提取最优初始权值和阈值通过粒子群优化的最佳权重矩阵7、训练网络和预测数据结合前面BP设置网络参数代码8、绘图和计算评价指标三、实验结果四、获取完整代码和数据一、粒子群优化算法核心计算公式%%参数初始化c1=4.494;%学习因子c2=4.494;%学习
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- 面试:正确率能很好的评估分类算法吗
华农DrLai
分类数据挖掘人工智能机器学习深度学习大数据算法
正确率(accuracy)正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?答案是否定的。正确率
- 目标检测中AP50 AP75 APs APm APl 含义
lqjun0827
深度学习机器学习目标检测目标跟踪人工智能
目标检测中AP50AP75APsAPmAPl含义介绍介绍在目标检测领域,我们经常会遇到一些评价指标,这些指标有助于衡量模型的性能。让我来解释一下这些概念:AP(AveragePrecision):平均精度,用于衡量目标检测模型的准确性。它考虑了不同置信度阈值下的精度,并计算出一个平均值。通常,我们使用不同的阈值(例如0.5、0.75等)来计算AP。AR(AverageRecall):平均召回率,表
- AI面试第六弹(评价指标)
加油11dd23
一、分类问题指标分类问题的评价指标多是基于以下混淆矩阵·真实值是positive,模型认为是positive的数量(TruePositive=TP)·真实值是positive,模型认为是negative的数量(FalseNegative=FN):这就是统计学上的第二类错误(TypeIIError)·真实值是negative,模型认为是positive的数量(FalsePositive=FP):这就
- matlab搭建IAE,ISE,ITAE性能指标
hasee_z6
MATLABmatlab
目录前言准备IAEISEITAE前言最近在使用matlab搭建控制系统性能评价指标模型,记录一下准备MATLABR2020IAEIAE函数表达式如下所示:IAE函数模型如下所示:ISEISE函数表达式如下所示:ISE函数模型如下所示:其中,MathFunction需要选择square。ITAEITAE函数表达式如下所示:ITAE函数模型如下所示:Clock填入仿真时间,Divide填入乘法,也就是
- 多元回归分析 | LASSO多输入单输出预测(Matlab完整程序)
前程算法屋
多元回归分析(Matlab)多元回归分析LASSO多输入单输出Matlab完整程序
多元回归分析|LASSO多输入单输出预测(Matlab完整程序)目录多元回归分析|LASSO多输入单输出预测(Matlab完整程序)预测结果评价指标基本介绍程序设计预测结果评价指标LASSO回归训练集平均绝对误差MAE:1.7669训练集平均相对误差MAPE:0.051742训练集均方根误差MSE:2.2747训练集均方根误差RMSE:0.068171验证集平均绝对误差MAE:2.0011验证集平
- 论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE
自信且放光芒66
深度学习论文阅读深度学习人工智能
目录人体姿态识别概述论文框架HPE分类人体建模模型二维单人姿态估计回归方法目前发展优化基于热图的方法基于CNN的几个网络利用身体结构信息提供构建HPE网络视频序列中的人体姿态估计2D多人姿态识别方法自上而下自下而上2DHPE总结数据集和评估指标2DHPE数据集2DHPE评价指标2DHPE方法性能的比较单人2DHPE多人2DHPE未来展望人体姿态识别概述应用模块:人机交互、运动分析、增强现实、虚拟现
- Python实现熵权法:客观求指标数据的权重
乌漆帅黑
python开发语言算法
介绍:熵权法(EntropyWeightMethod)是一种常用的多指标权重确定方法,用于评价指标之间的重要程度。它基于信息熵理论,通过计算指标数据的熵值和权重,实现客观、科学地确定指标权重,以辅助决策分析和多指标优化问题的解决。本文将介绍熵权法的基本原理,并提供Python编程语言的实现过程及示例代码,帮助理解和应用熵权法。目录1.数据准备2.计算指标熵值3.计算指标权重4.示例应用5.完整代码
- 推荐系统实践——第一章学习
欠我的都给我吐出来
今天开始阅读和学习《推荐系统实践》,希望和你一起学习一起成长,利用每一天,让自己成长成梦想的样子。阅读这本书的初衷很简单,增加自己在机器学习方面的应用涉猎程度。这本书据说很适合作为了解推荐系统在业界的应用情况和主要算法。按照数据分类的方法,每一章都根据一种用户的行为数据去探讨可以使用的算法,并且比较算法之间性能的差异。第一章主要是介绍了推荐系统在各个领域的应用以及推荐系统业界常用的评价指标。个性化
- 四、机器学习基础概念介绍
ITS_Oaij
脑电机器学习机器学习人工智能
四、机器学习基础概念介绍1_机器学习基础概念机器学习分类1.1有监督学习1.2无监督学习2_有监督机器学习—常见评估方法数据集的划分2.1留出法2.2校验验证法(重点方法)简单交叉验证K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)k折交叉验证(不单独留出测试集)留一法交叉验证Subject-wise交叉验证2.3bootstrap自助法3_有监督机器学习—学习评价指标3.1准
- 【初中生讲机器学习】6. 分类算法中常用的模型评价指标有哪些?here!
Geeker · LStar
人工智能机器学习算法机器学习人工智能分类算法评价指标监督学习
创建时间:2024-02-07最后编辑时间:2024-02-09作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐那就让我们开始吧!前面已经讲了两个分类算法(SVM&朴素贝叶斯),其中在【初中生讲机器学习】4.支持向量机算法怎么用?一个实例带你看懂!中
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- 基于卷积神经网络-最小二乘支持向量机CNN-LSSVM回归预测,多变量输入模型,matlab代码,要求2019及以上版本。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方
智能算法及其模型预测
cnn支持向量机回归
%%清空环境变量warningoff%关闭报警信息closeall%关闭开启的图窗clear%清空变量clc%清空命令行%%导入数据P_train=xlsread('data','trainingset','B2:G191')';T_train=xlsread('data','trainingset','H2:H191')';%测试集——44个样本P_test=xlsread('data','te
- 层次分析法(附实例)
陌雨’
数学建模
层次分析法-AHP问题:选择一部适合自己的手机一、确定评价对象与评价指标评价对象评价指标二、确定打分比较矩阵两两比较得到比较矩阵判断比较矩阵是否能通过一致性检验得分向量归一化处理求解得分向量打分矩阵模型评价优点系统性的分析方法简洁实用的决策方法所需定量数据信息较少缺点不能为决策提供新方案定量数据较少,定性成分多,不易令人信服指标过多时,数据统计量大,且权重难以确定特征值和特征向量的精确求法比较复杂
- 【推荐系统】召回模型线下评价指标
sdbhewfoqi
推荐系统
目录HitRate(HR)PrecisionRecallNDCG常用的评价标准:第一类是线上评测,比如通过点击率、网站流量、A/Btest等判断。这类评价标准在这里就不细说了,因为它们并不能参与到线下训练模型和选择模型的过程当中。第二类是线下评测。评测标准很多,我挑几个常用的。我就拿给用户推荐阅读相关链接来举例好了。HitRate(HR)HitRate(HR)所以到底是哪个????一说:https
- YOLOv8-seg 分割代码详解(三)Val
秋山丶雪绪
YOLOpython机器学习计算机视觉深度学习
前言YOLOv8-seg分割代码详解(一)PredictYOLOv8-seg分割代码详解(二)TrainYOLOv8-seg分割代码详解(三)Val 本文主要以源码+注释为主,可以了解YOLOv8计算评价指标的具体实现方法。模型原始输出preds=model(batch['img'],augment=augment)preds:(list:2)0:(Tensor:(b,4+cls_n+32,an
- WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测
前程算法屋
算法神经网络cnnWOA-CNN-BiLSTM
效果一览文章概述WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测Matlab语言1.多变量单输出,回归预测。Matlab版本要在2021B以上。优化的参数为:学习率,隐藏层节点数,正则化参数。评价指标包括:R2、MAE和MAPE等,图很多,出图结果如图所示,可完全满足您的需求[cool]2.直接替换Excel数据即可用,适合新手小白[
- 2018-12-16
韩静_340c
中小学心育课程的评价。评价心育课程的实施效果还是评价心育课程的实施过程?人的改变是一个复杂,多因素影响的过程。心意活动课的辅导效果不可能立竿见影,它的效果往往是滞后的。因此我们还是应该把重点放在评价心育活动课的实施过程上。评价是为分高下还是为促改进。学科教学评价指标适用于心育活动课吗?心育活动课的课堂进程是按团体动力的发展规律,再加以组织的。评课不要怕讲真话。讲真话肯定会触动开课教师的灵魂,但无论
- 指标体系构建整理
八克牙
1.定义评价指标体系是指表征评价对象各方面特性及相互联系的多个指标,所构成的具有内在结构的有机整体指标体系:从不同维度梳理业务,把指标有系统地组织起来。简而言之,指标体系=指标+体系,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫做指标体系指标体系的作用:监控业务情况;拆解指标寻找当前业务问题;评估业务可改进的地方,找出下一步工作的方向2遵循的原则区域性原则:衡量一个研究对象的运行情况,要
- 目标检测任务的调研与概述
Alexa2077
目标检测目标跟踪人工智能
目标检测任务的调研与概述0FQA1目标检测任务基本知识:1.1什么是目标检测?1.2目标检测的损失函数都有那些?1.2.1类别损失:1.2.2位置损失:1.3目标检测的评价指标都有那些?1.4目标检测有那些常见的数据集?2目标检测的进阶知识:2.1经典的backbone:2.2目标检测器-传统的检测方法2.3目标检测器-两阶段的检测方法:2.3.1R-CNN开山之作2.3.2SPP-Net2.3.
- 统计学|Python|主成分分析主成分得分系数计算
lightteng
统计学pythonpython开发语言矩阵数据分析
前言:因为spss不能直接得到主成分得分系数,参考csdn上其他博主写的文章,整理了一下用于计算主成分得分系数的代码主成分分析原理先略,后面再补主成分分析代码需要用到的库及文件读取,以下以读取csv文件为例,pandas还可以读取excel、sav(spss常用的数据集格式)等格式案例数据:全国重点水泥企业某年的经济效益分析,评价指标有:X1为固定资产利税率,X2为资金利税率,X3为销售收入利税率
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs