提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
电源是系统稳定运行的根本,主要分为以下几个知识点,电源供电、供电监控、电源管理和低功耗。当前阶段主要了解电源供电和硬件上电时序。
每个电源对 (VDD/VSS, VDDA/VSSA …)必须使用下述的滤波陶瓷电容去耦。这些电容必须尽量靠近芯片引脚,以确保器件正常工作。不建议去掉滤波电容来降低PCB 尺寸或成本,这可能导致器件工作不正常。
所有数字计算机系统都是由某种形式的震荡时钟电路驱动的。这种电路被称为系统的“脉搏”,是系统正确运行的关键。如果振荡器失灵,系统将完全无法运行,如果振荡器运行不规律,系统执行的所有与时间有关的计算都会有误差。
所有微控制器的启动流程都不通用。由于硬件的复杂性,必须运行一段由厂家定义的短小的“复位程序”来使硬件处于一种正确的状态,然后再开始执行用户程序。运行这个复位程序需要时间并且要求微控制器的振荡器已经运行。
当系统由可靠的电源供电时,一旦通电,电源迅速地达到额定输出电压,一旦断电,电源迅速地下降到0V,并且在接通的时候,电压不会降低。这时能够可靠地使用基于一个电容和一个电阻的低成本硬件复位。这种形式的复位电路称为阻容复位。
如果电源不够可靠,而涉及安全性,这种简单的阻容解决方案就不合适了。
— 注,根据需要,大家也可以使用STM32F407 NRST引脚的内部上拉:
http://www.armbbs.cn/forum.php?mod=viewthread&tid=93144
除了上电和手动复位,程序设计设置中还经常要用到软件复位,即调用一条函数就可以实现复位功能。此函数已经由CMSIS软件包中的core_cm4.h文件提供,函数如下:
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = (uint32_t)((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
(SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) |
SCB_AIRCR_SYSRESETREQ_Msk ); /* Keep priority group unchanged */
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
软件复位反映到实际硬件上,就是给硬件复位部分发一个复位信号:
STM32F407有如下六种时钟可供使用:
HSI (High-speed internal oscillator) :
HSI是内部的高速RC振荡器,频率16MHz,可被用于系统时钟。优势是低成本,无需外部时钟,快速启动(仅需几个微秒),缺点是精度差,即使经过校准。
HSE (High-speed external oscillator):
HSE是外部的高速振荡器,通过外接时钟源,有源或者无源晶振驱动,时钟范围4-26MHz。优势是精度高,缺点是增加成本。
LSE (Low-speed external oscillator)
LSE是外部的低速振荡器,通过外接时钟源,有源或者无源晶振驱动,一般接32.768KHz,主要用于RTC实时时钟。
LSI (Low-speed internal oscillator)
LSI是内部的低速RC振荡器,频率约是32KHz,主要用于独立看门狗和自动唤醒,也可以用于RTC实时时钟。
对于C46和C47,推荐使用高质量陶瓷电容,这种电容是设计用于需要高频率的场合,并且可以满足晶体或谐振器的需求。C46和C47通常具有相同的值。
这里再额外补充一个知识点,HSE旁路时钟和外置晶振区别:当前V5板子是采用的外置晶振模式,高速外部 (HSE) 时钟可以使用一个4到26MHz 的晶振 / 陶瓷谐振振荡器产生:
而bypass 旁路的意思就是不使用它,绕过它。具体到HSE旁路的话,用户直接提供4-26MHz的时钟源即可,可以使用有源晶振或者FPGA提供时钟等方式:
STM32的LSE晶振起振难(又称RTC起振)是老毛病了,选取晶振和配套电容比较讲究,最好按照ST提供的厂家和配套电容选取:http://www.armbbs.cn/forum.php?mod=viewthread&tid=87673 。
STM32F4开发板使用的外部晶振频率是25MHz,下面分步说明如何让其通过这个频率工作到168MHz的主频。
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
以往STM32F1和STM32F4系列都会在函数SystemInit里面配置PLL锁相环,使用了HAL后,需要在main函数里面配置。当前SystemInit函数实现的功能如下:
1. /**
2. * @brief Setup the microcontroller system
3. * Initialize the FPU setting, vector table location and External memory
4. * configuration.
5. * @param None
6. * @retval None
7. */
8. void SystemInit(void)
9. {
10. /* FPU settings ------------------------------------------------------------*/
11. #if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
12. SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
13. #endif
14. /* Reset the RCC clock configuration to the default reset state ------------*/
15. /* Set HSION bit */
16. RCC->CR |= (uint32_t)0x00000001;
17.
18. /* Reset CFGR register */
19. RCC->CFGR = 0x00000000;
20.
21. /* Reset HSEON, CSSON and PLLON bits */
22. RCC->CR &= (uint32_t)0xFEF6FFFF;
23.
24. /* Reset PLLCFGR register */
25. RCC->PLLCFGR = 0x24003010;
26.
27. /* Reset HSEBYP bit */
28. RCC->CR &= (uint32_t)0xFFFBFFFF;
29.
30. /* Disable all interrupts */
31. RCC->CIR = 0x00000000;
32.
33. #if defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
34. SystemInit_ExtMemCtl();
35. #endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */
36.
37. /* Configure the Vector Table location add offset address ------------------*/
38. #ifdef VECT_TAB_SRAM
39. SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
40. #else
41. SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
42. #endif
43. }
第12行:使能FPU单元。
第16 – 31行:复位RCC相关寄存器。
第69 – 73行:设置中断向量表的位置。
STM32F407的GPIO特性如下:
STM32F4的GPIO端口可以配置为如下的8种模式:
输入浮空
输入上拉
输入下拉
模拟功能
具有上拉或下拉功能的开漏输出
具有上拉或下拉功能的推挽输出
具有上拉或下拉功能的复用功能推挽
具有上拉或下拉功能的复用功能开漏
由于上拉和下拉是可选配置,对应的HAL库配置使用下面6种就可以表示:
GPIO_MODE_INPUT 输入模式
GPIO_MODE_OUTPUT_PP 推挽输出
GPIO_MODE_OUTPUT_OD 开漏输出
GPIO_MODE_AF_PP 复用推挽
GPIO_MODE_AF_OD 复用开漏
GPIO_MODE_ANALOG 模拟模式
推挽电路是两个参数相同的三极管或 MOSFET,以推挽方式存在于电路中。 电路工作时,两只对称的开关管每次只有一个导通,导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级提高电路的负载能力。 相对于开漏输出模式,推挽输出最大优势是输出高电平时,上升时间快,电压驱动能力强。
开漏端相当于 MOS 管的漏极(三极管的集电极),要得到高电平状态必须外接上拉电阻才行,因此输出高电平的驱动能力完全由外接上拉电阻决定,但是其输出低电平的驱动能力很强。开漏形式的电路有以下几个特点:
复用指的是GPIO切换到CPU内部设备(比如SPI,I2C,UART等电路),也就是GPIO不是作为普通IO使用,是由内部设备直接驱动。推挽和开漏的特征同上。
拉电流负载:一种负载电流从驱动门流向外电路,称为拉电流负载。比如使用STM32F4的GPIO直接驱动LED就是拉电流形式。
灌电流负载:负载电流从外电路流入驱动门,称为灌电流负载。比如下面这种形式的LED驱动电路。
有了上面这些知识后再来看STM32F407的IO驱动能力(截图来自STM32F407数据手册):
通过上面的截图可知:STM32F407单个引脚的最大拉电流和灌电流不可超过25mA。
/** @defgroup GPIO_speed_define GPIO speed define
* @brief GPIO Output Maximum frequency
* @{
*/
#define GPIO_SPEED_FREQ_LOW ((uint32_t)0x00000000U) /*!< Low speed */
#define GPIO_SPEED_FREQ_MEDIUM ((uint32_t)0x00000001U) /*!< Medium speed */
#define GPIO_SPEED_FREQ_HIGH ((uint32_t)0x00000002U) /*!< Fast speed */
#define GPIO_SPEED_FREQ_VERY_HIGH ((uint32_t)0x00000003U) /*!< High speed */
不同的速度等级支持的最大时钟速度可以看此贴 。
CMOS和TTL电平兼容问题也是一个比较重要的知识点,参见此贴
主要从功耗和防干扰考虑。
综上考虑,不使用的引脚设置为模拟模式,悬空即可。
具体参考此贴
具体参考此贴