一个机器学习项目主要步骤为:
1. 获取数据
- 使用Pandas加载数据,并返回一个包含所有数据的Pandas
DataFrame
对象。
import pandas as pd
def load_housing_data(housing_path=HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)
- 使用DataFrame的
head()
方法查看该数据集的前5行:
- 使用
describe()
方法展示数值属性的概括:
- 创建测试集(根据收入,进行分层采样):
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income_cat"]):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
2. 发现并可视化数据,发现规律
- 地理数据的可视化:
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population"]/100, label="population",
c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
)
plt.legend()
- 查找关联
使用corr()
方法计算出每对属性间的标准相关系数(standard correlation coefficient,也称作皮尔逊相关系数):
>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)#每个属性和房价中位数的关联度
median_house_value 1.000000
median_income 0.687170
total_rooms 0.135231
housing_median_age 0.114220
households 0.064702
total_bedrooms 0.047865
population -0.026699
longitude -0.047279
latitude -0.142826
Name: median_house_value, dtype: float64
- 尝试不同的属性组合
>>> housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
>>> housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
>>> housing["population_per_household"]=housing["population"]/housing["households"]
>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.687170
rooms_per_household 0.199343
total_rooms 0.135231
housing_median_age 0.114220
households 0.064702
total_bedrooms 0.047865
population_per_household -0.021984
population -0.026699
longitude -0.047279
latitude -0.142826
bedrooms_per_room -0.260070
Name: median_house_value, dtype: float64
#可以看出来,与总房间数或卧室数相比,新的bedrooms_per_room属性与房价中位数的关联更强
3. 数据预处理
- 处理缺失值
from sklearn.preprocessing import Imputer
imputer = Imputer(strategy="median")
housing_num = housing.drop("ocean_proximity", axis=1)#创建一份不包括文本属性ocean_proximity的数据副本
imputer.fit(housing_num)
X = imputer.transform(housing_num)
- 处理文本和类别属性(使用独热编码One-Hot Encoding)
from sklearn.preprocessing import CategoricalEncoder # in future versions of Scikit-Learn
cat_encoder = CategoricalEncoder()
housing_cat_reshaped = housing_cat.values.reshape(-1, 1)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat_reshaped)
- 特征缩放
有两种常见的方法可以让所有的属性有相同的量度:线性函数归一化(Min-Max scaling)和标准化(standardization)。 - 转换流水线
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('imputer', Imputer(strategy="median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
cat_pipeline = Pipeline([
('selector', DataFrameSelector(cat_attribs)),
('cat_encoder', CategoricalEncoder(encoding="onehot-dense")),
])
full_pipeline = FeatureUnion(transformer_list=[
("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline),
])
运行流水线 :
housing_prepared = full_pipeline.fit_transform(housing)
4. 选择模型,进行训练
- 线性回归模型
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
- 决策树模型
from sklearn.tree import DecisionTreeRegressor
tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
- 随机森林模型
from sklearn.ensemble import RandomForestRegressor
forest_reg = RandomForestRegressor()
forest_reg.fit(housing_prepared, housing_labels)
使用 Scikit-Learn 的交叉验证功能---K 折交叉验证(K-fold cross-validation):
from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
scoring="neg_mean_squared_error", cv=10)
rmse_scores = np.sqrt(-scores)
5. 微调模型
- 网格搜索
from sklearn.model_selection import GridSearchCV
param_grid = [
{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
{'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]
forest_reg = RandomForestRegressor()
grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
scoring='neg_mean_squared_error')
grid_search.fit(housing_prepared, housing_labels)
- 随机搜索
6. 确定最优模型
完整项目代码:一个完整的机器学习项目