图像灰度线性变换
图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如下所示:
该公式中表示灰度线性变换后的灰度值,表示变换前输入图像的灰度值,和为线性变换方程的参数,分别表示斜率和截距。
- 当α=1,b=0时,保持原始图像
- 当α=1,b!=0时,图像所有的灰度值上移或下移
- 当α=-1,b=255时,原始图像的灰度值反转
- 当α>1时,输出图像的对比度增强
- 当0<α<1时,输出图像的对比度减小
- 当α<0时,原始图像暗区域变亮,亮区域变暗,图像求补
1.图像灰度上移变换
该算法将实现图像灰度值的上移,从而提升图像的亮度,其实现代码如下所示。由于图像的灰度值位于0至255区间之内,所以需要对灰度值进行溢出判断。
图像的所有灰度值上移50,图像变得更白了。注意,纯黑色对应的灰度值为0,纯白色对应的灰度值为255。
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('data/test3.jpg')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度上移变换 DB=DA+50
for i in range(height):
for j in range(width):
if (int(grayImage[i,j]+50) > 255):
gray = 255
else:
gray = int(grayImage[i,j]+50)
result[i,j] = np.uint8(gray)
#显示图像
titles = ['Gray Image', 'result']
images = [grayImage, result]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
2.图像对比度增强变换
该算法将增强图像的对比度,Python实现代码如下所示:
图像的所有灰度值增强1.5倍。
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('data/test3.jpg')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度增强变换 DB=DA*1.5
for i in range(height):
for j in range(width):
if (int(grayImage[i,j]*1.5) > 255):
gray = 255
else:
gray = int(grayImage[i,j]*1.5)
result[i,j] = np.uint8(gray)
#显示图像
titles = ['Gray Image', 'result']
images = [grayImage, result]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
3.图像对比度减弱变换
该算法将减弱图像的对比度,Python实现代码如下所示:
图像的所有灰度值减弱,图像变得更暗。
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('data/test3.jpg')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度减弱变换 DB=DA*0.8
for i in range(height):
for j in range(width):
gray = int(grayImage[i,j]*0.8)
result[i,j] = np.uint8(gray)
#显示图像
titles = ['Gray Image', 'result']
images = [grayImage, result]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
4.图像灰度反色变换
反色变换又称为线性灰度求补变换,它是对原图像的像素值进行反转,即黑色变为白色,白色变为黑色的过程。其Python实现代码如下所示:
图像处理前后的灰度值是互补的
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('data/test3.jpg')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度反色变换 DB=255-DA
for i in range(height):
for j in range(width):
gray = 255 - grayImage[i,j]
result[i,j] = np.uint8(gray)
#显示图像
titles = ['Gray Image', 'result']
images = [grayImage, result]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
图像的灰度非线性变换
图像的灰度非线性变换主要包括对数变换、幂次变换、指数变换、分段函数变换,通过非线性关系对图像进行灰度处理
1.图像灰度非线性变换
原始图像的灰度值按照的公式进行非线性变换,其代码如下:
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('data/test3.jpg')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
for j in range(width):
gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
result[i,j] = np.uint8(gray)
#显示图像
titles = ['Gray Image', 'result']
images = [grayImage, result]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
2.图像灰度非线性变换
其中c为尺度比较常数,为原始图像灰度值,为变换后的目标灰度值。表示对数曲线下的灰度值变化情况。
由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。
对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def log_plot(c):
x = np.arange(0, 256, 0.01)
y = c * np.log(1 + x)
plt.plot(x, y, 'r', linewidth=1)
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.title(u'对数变换函数')
plt.xlim(0, 255), plt.ylim(0, 255)
plt.show()
#对数变换
def log(c, img):
output = c * np.log(1.0 + img)
output = np.uint8(output + 0.5)
return output
#读取原始图像
img = cv2.imread('data/test3.jpg')
src = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#绘制对数变换曲线
log_plot(42)
#图像灰度对数变换
output = log(42, src)
#显示图像
titles = ['Input', 'Output']
images = [src, output]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
3.图像灰度伽玛变换
伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式所示:
- 当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。
- 当γ<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。
- 当γ=1时,该灰度变换是线性的,此时通过线性方式改变原图像。
伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def gamma_plot(c, v):
x = np.arange(0, 256, 0.01)
y = c*x**v
plt.plot(x, y, 'r', linewidth=1)
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.title(u'伽马变换函数')
plt.xlim([0, 255]), plt.ylim([0, 255])
plt.show()
#伽玛变换
def gamma(img, c, v):
lut = np.zeros(256, dtype=np.float32)
for i in range(256):
lut[i] = c * i ** v
output_img = cv2.LUT(img, lut) #像素灰度值的映射
output_img = np.uint8(output_img+0.5)
return output_img
#读取原始图像
img = cv2.imread('data/test3.jpg')
src = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)
#图像灰度伽玛变换
output = gamma(src, 0.00000005, 4.0)
#显示图像
cv2.imshow('Imput', src)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
#显示图像
titles = ['Input', 'Output']
images = [src, output]
plt.figure(figsize=(10, 4))
for i in range(2):
plt.subplot(1, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()