iOS底层原理06:对象的本质 & isa

OC对象本质

在探索oc对象本质前,先了解一个编译器:clang

Clang

  • clang是一个由Apple主导编写,基于LLVMC/C++/OC的轻量级编译器
  • 主要是用于底层编译,将一些文件``输出c++文件,例如main.m 输出成main.cpp,其目的是为了更好的观察底层的一些结构实现的逻辑,方便理解底层原理。

探索对象本质

  • main中自定义一个类HTPerson,有一个属性name
@interface HTPerson : NSObject

@property (nonatomic, copy) NSString *name;

@end
  • 通过终端,利用clangmain.m编译成 main.cpp,有以下几种编译命令,这里使用的是第一种
//1、将 main.m 编译成 main.cpp
clang -rewrite-objc main.m -o main.cpp

//2、将 ViewController.m 编译成  ViewController.cpp
clang -rewrite-objc -fobjc-arc -fobjc-runtime=ios-13.0.0 -isysroot / /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator13.7.sdk ViewController.m

//以下两种方式是通过指定架构模式的命令行,使用xcode工具 xcrun
//3、模拟器文件编译
- xcrun -sdk iphonesimulator clang -arch arm64 -rewrite-objc main.m -o main-arm64.cpp 

//4、真机文件编译
- xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m -o main- arm64.cpp 
  • 打开编译好的main.cpp,找到HTPerson的定义,发现HTPerson在底层会被编译成 struct 结构体
    • HTPerson_IMPL中的第一个属性 其实就是 isa,是继承自NSObject,属于伪继承,伪继承的方式是直接将NSObject结构体定义为HTPerson中的第一个属性,意味着HTPerson 拥有 NSObject中的所有成员变量
    • HTPerson中的第一个属性 NSObject_IVARS 等效于 NSObject中的 isa
//NSObject的定义
@interface NSObject  {
    Class isa  OBJC_ISA_AVAILABILITY;
}

//NSObject 的底层编译
struct NSObject_IMPL {
    Class isa;
};

//HTPerson的底层编译
struct HTPerson_IMPL {
    struct NSObject_IMPL NSObject_IVARS; // 等效于 Class isa;
    NSString *_name;
};

通过上述分析,理解了OC对象的本质,但是看到NSObject的定义,会产生一个疑问:为什么isa的类型是Class?

  • 在iOS底层原理02:alloc & init & new 源码分析文章中,提及过alloc方法的核心之一的initInstanceIsa方法,通过查看这个方法的源码实现,我们发现,在初始化isa指针时,是通过isa_t类型初始化的
  • 而在NSObject定义中isa的类型是Class,其根本原因是由于isa 对外反馈的是类信息,为了让开发人员更加清晰明确,需要在isa返回时做了一个类型强制转换,类似于swift中的 as 的强转。

总结

所以从上述探索过程中可以得出:

  • OC对象的本质 其实就是 结构体
  • HTPerson中的isa是继承自NSObject中的isa

objc_setProperty 源码探索

除了HTPerson的底层定义,我们发现还有属性 name 对应的 setget方法,如下图所示,其中set方法的实现依赖于runtime中的objc_setProperty

image

可以通过以下步骤来一步步解开 objc_setProperty的底层实现

  • objc4-818中全局搜索objc_setProperty,找到objc_setProperty的源码实现
objc_setProperty源码实现
  • 进入reallySetProperty的源码实现,其方法的原理就是新值retain旧值release
reallySetProperty源码实现

【总结】
通过对objc_setProperty的底层源码探索,有以下几点说明:

  • objc_setProperty方法的目的是用于关联 上层的set方法 以及 底层的set方法,其本质就是一个接口
  • 这么设计的原因是,上层的set方法有很多,如果直接调用底层set方法中,会产生很多的临时变量,当你想查找一个sel时,会非常麻烦
  • 基于上述原因,苹果采用了适配器设计模式(即将底层接口适配为客户端需要的接口)对外提供一个接口,供上层的set方法使用,对内调用底层的set方法,使其相互不受影响,即无论上层怎么变,下层都是不变的,或者下层的变化也无法影响上层,主要是达到上下层接口隔离的目的

下图是上层隔离层底层之间的关系

image

cls 与 类 的关联原理

在此之前,需要先了解什么是联合体,为什么isa的类型isa_t是使用联合体定义

联合体(union)

构造数据类型的方式有以下两种:

  • 结构体(struct)
  • 联合体(union,也称为共用体

结构体

结构体是指把不同的数据组合成一个整体,其变量共存的,变量不管是否使用,都会分配内存。

  • 缺点:所有属性都分配内存,比较浪费内存,假设有4个int成员,一共分配了16字节的内存,但是在使用时,你只使用了4字节,剩余的12字节就是属于内存的浪费
  • 优点:存储容量较大包容性强,且成员之间不会相互影响

联合体

联合体也是由不同的数据类型组成,但其变量是互斥的,所有的成员共占一段内存。而且共用体采用了内存覆盖技术同一时刻只能保存一个成员的值,如果对新的成员赋值,就会将原来成员的值覆盖掉

  • 缺点:同一时刻只能保存一个成员的值,包容性弱
  • 优点:所有成员共用一段内存,使内存的使用更为精细灵活,同时也节省了内存空间

两者的区别

  • 内存占用情况
    • 结构体的各个成员会占用不同的内存,互相之间没有影响
    • 共用体的所有成员占用同一段内存,修改一个成员会影响其余所有成员
  • 内存分配大小
    • 结构体内存 >= 所有成员占用的内存总和(成员之间可能会有缝隙)
    • 共用体占用的内存等于最大的成员占用的内存

isa的类型 isa_t

以下是isa指针的类型isa_t的定义,从定义中可以看出是通过联合体(union)定义的。

union isa_t { //联合体
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }
    //提供了cls 和 bits ,两者是互斥关系
    Class cls;
    uintptr_t bits;
#if defined(ISA_BITFIELD)
    struct {
        ISA_BITFIELD;  // defined in isa.h
    };
#endif
};

isa_t类型使用联合体的原因也是基于内存优化的考虑,这里的内存优化是指在isa指针中通过char + 位域(即二进制中每一位均可表示不同的信息)的原理实现。通常来说,isa指针占用的内存大小是8字节,即64位,已经足够存储很多的信息了,这样可以极大的节省内存,以提高性能

isa_t的定义中可以看出:

  • 提供了两个成员,clsbits,由联合体的定义所知,这两个成员是互斥的,也就意味着,当初始化isa指针时,有两种初始化方式

    • 通过cls初始化,bits无默认值
    • 通过bits初始化,cls有默认值
  • 还提供了一个结构体定义的位域,用于存储类信息及其他信息,结构体的成员ISA_BITFIELD,这是一个宏定义,有两个版本 __arm64__(对应ios 移动端) 和 __x86_64__(对应macOS),以下是它们的一些宏定义,如下图所示

image
  • nonpointer有两个值,表示自定义的类等,占1
    • 0纯isa指针
    • 1:不只是类对象地址,isa中包含了类信息、对象的引用计数
  • has_assoc表示关联对象标志位,占1
    • 0:没有关联对象
    • 1:存在关联对象
  • has_cxx_dtor 表示该对象是否有C++/OC的析构器(类似于dealloc),占1
    • 如果有析构函数,则需要做析构逻辑
    • 如果没有,则可以更快的释放对象
  • shiftcls表示存储类的指针的值(类的地址), 即类信息
    • arm64中占 33位,开启指针优化的情况下,在arm64架构中有33位用来存储类指针
    • x86_64中占 44
  • magic 用于调试器判断当前对象是真的对象 还是 没有初始化的空间,占6
  • weakly_refrenced是 指对象是否被指向 或者 曾经指向一个ARC的弱变量,占1
  • deallocating 标志对象是否正在释放内存,占1
  • has_sidetable_rc表示 当对象引用计数大于10时,则需要借用该变量存储进位,占1
  • extra_rc(额外的引用计数) ,表示该对象的引用计数值,实际上是引用计数值减1
    • 如果对象的引用计数为10,那么extra_rc为9(这个仅为举例说明),实际上iPhone 真机上的 extra_rc 是使用 19位来存储引用计数的

针对两种不同平台,其isa的存储情况如图所示

image

原理探索

  • 通过alloc --> _objc_rootAlloc --> callAlloc --> _objc_rootAllocWithZone --> _class_createInstanceFromZone方法路径,查找到initInstanceIsa,并进入其原理实现
inline void 
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
    ASSERT(!cls->instancesRequireRawIsa());
    ASSERT(hasCxxDtor == cls->hasCxxDtor());
    // 初始化isa
    initIsa(cls, true, hasCxxDtor);
}
  • 进入initIsa方法的源码实现,主要是初始化isa指针
image
  • 该方法的逻辑主要分为两部分
    • 通过 cls 初始化 isa
    • 通过 bits 初始化 isa

验证 isa指针 位域(0-64)

根据前文提及的0-64位域,可以在这里通过initIsa方法中证明有isa指针中有这些位域(目前是处于macOS,所以使用的是x86_64

  • 首先通过main中的HTPerson 断点 --> initInstanceIsa --> initIsa --> 走到else中的 isa初始化
image
  • 执行lldb命令:p newisa,得到newisa的详细信息
image
  • 继续往下执行,走到newisa.bits = ISA_MAGIC_VALUE;下一行,表示为isabits成员赋值,重新执行lldb命令p newisa,得到的结果如下
image
  • 其中magic59是由于将isa指针地址转换为二进制,从47(因为前面有4个位域,共占用47位,地址是从0开始)位开始读取6位,再转换为十进制,如下图所示
image

isa 与 类 的关联

cls 与 isa 关联原理就是isa指针中的shiftcls位域中存储了类信息,其中initInstanceIsa的过程是将 calloc 指针 和当前的 类cls 关联起来,有以下几种验证方式:

  • 【方式一】通过setClass方法中的newisa.shiftcls = (uintptr_t)cls >> 3;验证
  • 【方式二】通过isa指针地址ISA_MSAK 的值 & 来验证
  • 【方式三】通过runtime的方法object_getClass验证

方式一:通过 setClass 方法

image
  • 进入 setClass方法,运行至shiftcls = (uintptr_t)newCls >> 3;,其中 shiftcls存储当前类的值信息
    • 此时查看cls,是HTPerson
    • shiftcls赋值的逻辑是将 HTPerson进行编码后,右移3位
image
  • 执行lldb命令p (uintptr_t)newCls,结果为(uintptr_t) $0 = 4295000296
  • 再右移三位,p (uintptr_t)newCls >> 3, 将得到536875037存储到shiftcls
image
  • 继续执行程序到isa = newisa;部分,此时执行p newisa
image
  • 此时cls 由默认值,变成了HTPerson,将isa与cls完美关联
image

为什么在shiftcls赋值时需要类型强转?
因为内存的存储不能存储字符串机器码只能识别 0 、1这两种数字,所以需要将其转换为uintptr_t数据类型,这样shiftcls中存储的类信息才能被机器码理解, 其中uintptr_tlong
为什么需要右移3位?
主要是由于shiftcls处于isa指针地址的中间部分,前面还有3个位域,为了不影响前面的3个位域的数据,需要右移将其抹零

方式二:通过 isa & ISA_MSAK

  • 在方式一后,继续执行,回到_class_createInstanceFromZone方法,此时cls 与 isa已经关联完成,执行po obj
  • 执行x/4gx obj,得到isa指针的地址0x011d8001000080e9
  • isa指针地址 & ISA_MASK (处于macOS,使用x86_64中的宏定义),即 po 0x011d8001000080e9 & 0x00007ffffffffff8,得出HTPerson
    • arm64中,ISA_MASK 宏定义的值为0x0000000ffffffff8ULL
    • x86_64中,ISA_MASK 宏定义的值为0x00007ffffffffff8ULL
image

方式三:通过 object_getClass

通过查看object_getClass的源码实现,同样可以验证isa与类关联的原理,有以下几步:

  • main中导入#import
  • 通过runtime的api,即object_getClass函数获取类信息
  • 进入object_getClass源码实现
Class object_getClass(id obj)
{
    if (obj) return obj->getIsa();
    else return Nil;
}
  • 进入getIsa的源码实现
image
  • 点击ISA(),进入源码
image
  • 进入getDecodedClass源码实现,可以看到如果是indexed类型,执行if流程,反之 执行的是else流程
image
  • 进入getClass源码实现
image
  • 这与方式二中的原理是一致的,获得当前的类信息

你可能感兴趣的:(iOS底层原理06:对象的本质 & isa)