iOS系统的任务管理-GCD探究(上)

前言:

iOS对任务的处理运用了多种线程技术,我们常用的有NSOperation和GCD,这篇文章着重研究GCD的原理。

一、GCD简介:

1、基本概念:

全称为Grand central dispatch,纯C语言封装成多个功能强大的函数,从而完成iOS任务在执行过程中全面、严谨的管理;在代码方面的简单解释:通过队列调度任务,进一步依赖线程函数去执行,怎么去理解这句话呢:
①、任务的解释:
这个比较好理解,即iOS中的代码实现的行为事件,每个事件都可被当做一个任务,GCD中封装在Block内;
②、队列的解释:

队列解释辅助图.png
  • 队列可以起到调度任务的作用,我理解为任务执行的第一层控制;
  • 所谓串行队列就是我的任务1、2调度有明显的顺序依赖关系,队列调度任务时,是按照FIFO(first in first out 先进先出)原则来的,必须任务1执行完了才执行任务2;
  • 并发队列则和串行队列有明显的区别,广义上的理解是同时间调取多条任务,但相互之间调度没有依赖关系

③、线程函数的解释:

任务仅仅靠队列调度一个去控制任务的执行够不够?显然是不够满足需求的,我没办法利用到CPU的多核优势,而线程函数可以充分利用多核优势,提高运行效率:

  • 同步函数:dispatch_sync
    必须等待函数内任务执行完,才会继续往下走,不会开启线程;
  • 异步函数:dispatch_async
    不用等待函数内任务执行完毕,会开辟线程处理block任务;
2、GCD的优势:

①、GCD是苹果设计并推荐使用的多线程处理方式,充分利用设备cpu多核硬件配置,提高任务处理效率
②、GCD会自动管理线程的生命周期,包括创建线程、任务调度、线程的销毁,不需要写线程的管理代码;
③、任务的代码封装在block中,没有参数、没有返回值。

3、GCD中队列与函数的搭配:
函数与队列的搭配情况.png

二、GCD队列源码分析:

1、主队列与全局队列:

①、主队列:

  • 概念:专门调度任务在主线程上处理的串行队列,dispatch_get_main_queue()
  • 特征:不会开启线程,如果当前主线程有任务在执行,那么无论主队列中当前被添加了什么任务,都不会被调度 ;
  • 主队列源码探究:
    dispatch_queue_t serial = dispatch_queue_create("A", DISPATCH_QUEUE_SERIAL);
    
    dispatch_queue_t conque = dispatch_queue_create("B", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_queue_t mainQueue = dispatch_get_main_queue();

    dispatch_queue_t globQueue = dispatch_get_global_queue(0, 0);

    NSLog(@"%@-%@-%@-%@",serial,conque,mainQueue,globQueue);

上述代码,创建分别有标识"A"、"B"的队列,再获取主队列和全局队列,查看打印结果:


---

发现字符串A和B都接在队列的打印结果>的前面,像是一个字符串的赋值,那么main_queue的字符串赋值倒推为com.apple.main-thread;另外在这个方法调用里面打个断点,如下图:

主队列探究1.png

利用lldb输入bt指令打印方法堆栈看到如下:


bt
 * thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 7.1
  * frame #0: 0x0000000106b9dcc7 Test`__29-[ViewController viewDidLoad]_block_invoke_2(.block_descriptor=0x0000000106ba1108) at ViewController.m:30:9
    frame #1: 0x0000000106e0f7ec libdispatch.dylib`_dispatch_call_block_and_release + 12
    frame #2: 0x0000000106e109c8 libdispatch.dylib`_dispatch_client_callout + 8
    frame #3: 0x0000000106e1ee75 libdispatch.dylib`_dispatch_main_queue_callback_4CF + 1152

可以看到相关的方法写在libdispatch.dylib库里面,跳到此库搜com.apple.main-thread字符串,看到这段函数:


struct dispatch_queue_static_s _dispatch_main_q = {
    DISPATCH_GLOBAL_OBJECT_HEADER(queue_main),
#if !DISPATCH_USE_RESOLVERS
    .do_targetq = _dispatch_get_default_queue(true),
#endif
    .dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(1) |
            DISPATCH_QUEUE_ROLE_BASE_ANON,
    .dq_label = "com.apple.main-thread",
    .dq_atomic_flags = DQF_THREAD_BOUND | DQF_WIDTH(1),
    .dq_serialnum = 1,
};

②、全局队列

  • 概念与特征:为了方便程序员的使用,苹果提供了全局队列 dispatch_get_global_queue(0, 0),全局队列是一个并发队列,在使用多线程开发时,如果对队列没有特殊需求,在执行异步任务时,可以直接使用全局队列

  • 全局队列源码探究:

同理,来到了这段函数:

struct dispatch_queue_global_s _dispatch_root_queues[] = {
#define _DISPATCH_ROOT_QUEUE_IDX(n, flags) \
        ((flags & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) ? \
        DISPATCH_ROOT_QUEUE_IDX_##n##_QOS_OVERCOMMIT : \
        DISPATCH_ROOT_QUEUE_IDX_##n##_QOS)
#define _DISPATCH_ROOT_QUEUE_ENTRY(n, flags, ...) \
    [_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
        DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
        .dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
        .do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
        .dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
        .dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
                _dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
                _dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
        __VA_ARGS__ \
    }
    _DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, 0,
        .dq_label = "com.apple.root.maintenance-qos",
        .dq_serialnum = 4,
    ),
...
    _DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT, DISPATCH_PRIORITY_FLAG_FALLBACK,
        .dq_label = "com.apple.root.default-qos",
        .dq_serialnum = 10,
    ),
...
    _DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
        .dq_label = "com.apple.root.user-interactive-qos.overcommit",
        .dq_serialnum = 15,
    ),
};

到这里有点复杂,不过貌似dq_serialnum这句代码类似,主队列为1,全局队列为4-15,这是什么意思呢?是否认为dq_serialnum=1时为主队列?貌似不够严谨,因为他们还有个本质区别,一个是串行队列、一个是并发队列
那么全局搜索下dq_serialnum,发现有个赋值函数:

队列探索2.png

外层的函数名像是个queue的初始化,是个关键信息;本身的dq_serialnum的赋值函数os_atomic_inc_orig有个&取值的东西,点进去看看,来了一段关键信息:

// skip zero
// 1 - main_q
// 2 - mgr_q
// 3 - mgr_root_q
// 4,5,6,7,8,9,10,11,12,13,14,15 - global queues
// 17 - workloop_fallback_q
// we use 'xadd' on Intel, so the initial value == next assigned
#define DISPATCH_QUEUE_SERIAL_NUMBER_INIT 17

第二行有个关键备注//1 - main_q,// 4,5,6,7,8,9,10,11,12,13,14,15 - global queues,这就清晰了,dq_serialnum=1时主队列,4-15是全局队列;

这样探究还不够,但我们看队列的创建方法dispatch_queue_create,返回值是dispatch_queue_t,依次查看方法调用链路,为dispatch_queue_create——>_dispatch_lane_create_with_target,来到一段非常长且关键的代码了:

static dispatch_queue_t
_dispatch_lane_create_with_target(const char *label, dispatch_queue_attr_t dqa,
        dispatch_queue_t tq, bool legacy)
{
    dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);//串行、并行队列的宏定义处理后

    //
    // Step 1: Normalize arguments (qos, overcommit, tq) 规范化参数,去除上行代码参数做处理
    //

    dispatch_qos_t qos = dqai.dqai_qos;
#if !HAVE_PTHREAD_WORKQUEUE_QOS
    if (qos == DISPATCH_QOS_USER_INTERACTIVE) {
        dqai.dqai_qos = qos = DISPATCH_QOS_USER_INITIATED;
    }
    if (qos == DISPATCH_QOS_MAINTENANCE) {
        dqai.dqai_qos = qos = DISPATCH_QOS_BACKGROUND;
    }
#endif // !HAVE_PTHREAD_WORKQUEUE_QOS

    _dispatch_queue_attr_overcommit_t overcommit = dqai.dqai_overcommit;
    if (overcommit != _dispatch_queue_attr_overcommit_unspecified && tq) {
        if (tq->do_targetq) {
            DISPATCH_CLIENT_CRASH(tq, "Cannot specify both overcommit and "
                    "a non-global target queue");
        }
    }

    if (tq && dx_type(tq) == DISPATCH_QUEUE_GLOBAL_ROOT_TYPE) {
        // Handle discrepancies between attr and target queue, attributes win
        if (overcommit == _dispatch_queue_attr_overcommit_unspecified) {
            if (tq->dq_priority & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) {
                overcommit = _dispatch_queue_attr_overcommit_enabled;
            } else {
                overcommit = _dispatch_queue_attr_overcommit_disabled;
            }
        }
        if (qos == DISPATCH_QOS_UNSPECIFIED) {
            qos = _dispatch_priority_qos(tq->dq_priority);
        }
        tq = NULL;
    } else if (tq && !tq->do_targetq) {
        // target is a pthread or runloop root queue, setting QoS or overcommit
        // is disallowed
        if (overcommit != _dispatch_queue_attr_overcommit_unspecified) {
            DISPATCH_CLIENT_CRASH(tq, "Cannot specify an overcommit attribute "
                    "and use this kind of target queue");
        }
    } else {
        if (overcommit == _dispatch_queue_attr_overcommit_unspecified) {
            // Serial queues default to overcommit!
            overcommit = dqai.dqai_concurrent ?
                    _dispatch_queue_attr_overcommit_disabled :
                    _dispatch_queue_attr_overcommit_enabled;
        }
    }
    if (!tq) {
        tq = _dispatch_get_root_queue(
                qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
                overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
        if (unlikely(!tq)) {
            DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
        }
    }

    //
    // Step 2: Initialize the queue
    //

    if (legacy) {
        // if any of these attributes is specified, use non legacy classes
        if (dqai.dqai_inactive || dqai.dqai_autorelease_frequency) {
            legacy = false;
        }
    }

    const void *vtable;
    dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
    if (dqai.dqai_concurrent) {
        vtable = DISPATCH_VTABLE(queue_concurrent);
    } else {
        vtable = DISPATCH_VTABLE(queue_serial);
    }
    switch (dqai.dqai_autorelease_frequency) {
    case DISPATCH_AUTORELEASE_FREQUENCY_NEVER:
        dqf |= DQF_AUTORELEASE_NEVER;
        break;
    case DISPATCH_AUTORELEASE_FREQUENCY_WORK_ITEM:
        dqf |= DQF_AUTORELEASE_ALWAYS;
        break;
    }
    if (label) {
        const char *tmp = _dispatch_strdup_if_mutable(label);
        if (tmp != label) {
            dqf |= DQF_LABEL_NEEDS_FREE;
            label = tmp;
        }
    }

    dispatch_lane_t dq = _dispatch_object_alloc(vtable,
            sizeof(struct dispatch_lane_s));
    _dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
            DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
            (dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));

    dq->dq_label = label;
    dq->dq_priority = _dispatch_priority_make((dispatch_qos_t)dqai.dqai_qos,
            dqai.dqai_relpri);
    if (overcommit == _dispatch_queue_attr_overcommit_enabled) {
        dq->dq_priority |= DISPATCH_PRIORITY_FLAG_OVERCOMMIT;
    }
    if (!dqai.dqai_inactive) {
        _dispatch_queue_priority_inherit_from_target(dq, tq);
        _dispatch_lane_inherit_wlh_from_target(dq, tq);
    }
    _dispatch_retain(tq);
    dq->do_targetq = tq;
    _dispatch_object_debug(dq, "%s", __func__);
    return _dispatch_trace_queue_create(dq)._dq;
}

这什么玩意儿?先看return吧,_dispatch_trace_queue_create函数中的trace汉语是追踪的意思,这像是我们平常做的埋点操作,太过复杂就不看了,重点是这个dq(前面探索主队列时这个dq也出现了),这行代码像是一个开辟内存并实例化的代码(包含allocinit):

 dispatch_lane_t dq = _dispatch_object_alloc(vtable,
            sizeof(struct dispatch_lane_s));
    _dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
            DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
            (dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));

这个_dispatch_queue_init的代码貌似在前面探索全局队列的时候出现过,点进去看看,dqf |= DQF_WIDTH(width);根据dqai.dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1穿的参数,可以确定,如果是串行队列,那么DQF_WIDTH(1),这才定义串行队列的其中一个特定标识,而不是serilnum

三、GCD关于queue的补充:

1、前文总结:

实际上研究了初步队列的创建,从源码上识别了主队列、全局队列、串行队列、并发队列,但我这里有个奇怪的地方,我们在create函数外,需要返回的是个dispatch_queue_t,结果在_dispatch_queue_init构造函数和return的函数_dispatch_trace_queue_create中返回的确是dispatch_queue_class_t,而_dispatch_object_alloc函数点到最后发现返回的是个_os_object_t,好像有点乱,那么queue到底是个什么呢?

2、dispatch_queue_t继承探究:

dispatch_queue_t serial = dispatch_queue_create("A", DISPATCH_QUEUE_SERIAL);

点进去dispatch_queue_t查询,并依次查询发现了一个宏定义:


DISPATCH_DECL(dispatch_queue);

#define DISPATCH_DECL(name) OS_OBJECT_DECL_SUBCLASS(name, dispatch_object)

到OS_OBJECT_DECL_SUBCLASS无法继续查询,到libDispatch.dylib库中查询发现了以下定义链路:

#define OS_OBJECT_DECL_SUBCLASS(name, super) \
        OS_OBJECT_DECL_IMPL(name, NSObject, )

#define OS_OBJECT_CLASS(name) OS_##name

#define OS_OBJECT_DECL_IMPL(name, adhere, ...) \
        OS_OBJECT_DECL_PROTOCOL(name, __VA_ARGS__) \
        typedef adhere \
                * OS_OBJC_INDEPENDENT_CLASS name##_t

#define OS_OBJECT_DECL_PROTOCOL(name, ...) \
        @protocol OS_OBJECT_CLASS(name) __VA_ARGS__ \
        @end

#define OS_OBJC_INDEPENDENT_CLASS __attribute__((objc_independent_class))

翻译到最后是个这个


@protocol OS_dispatch_queue  
@end
typedef NSObject *    dispatch_queue_t

找到这个协议 OS_dispatch_queue

#ifdef __OBJC__
@protocol OS_dispatch_queue;
#endif

// Lane cluster class: type for all the queues that have a single head/tail pair
typedef union {
    struct dispatch_lane_s *_dl;
    struct dispatch_queue_static_s *_dsq;
    struct dispatch_queue_global_s *_dgq;
    struct dispatch_queue_pthread_root_s *_dpq;
    struct dispatch_source_s *_ds;
    struct dispatch_channel_s *_dch;
    struct dispatch_mach_s *_dm;
#ifdef __OBJC__
    id _objc_dq; // unsafe cast for the sake of object.m
#endif
} dispatch_lane_class_t DISPATCH_TRANSPARENT_UNION;

// Dispatch queue cluster class: type for any dispatch_queue_t
typedef union {
    struct dispatch_queue_s *_dq;
    struct dispatch_workloop_s *_dwl;
    struct dispatch_lane_s *_dl;
    struct dispatch_queue_static_s *_dsq;
    struct dispatch_queue_global_s *_dgq;
    struct dispatch_queue_pthread_root_s *_dpq;
    struct dispatch_source_s *_ds;
    struct dispatch_channel_s *_dch;
    struct dispatch_mach_s *_dm;
    dispatch_lane_class_t _dlu;
#ifdef __OBJC__
    id _objc_dq;
#endif
} dispatch_queue_class_t DISPATCH_TRANSPARENT_UNION;

#ifndef __OBJC__
typedef union {
    struct _os_object_s *_os_obj;
    struct dispatch_object_s *_do;
    struct dispatch_queue_s *_dq;
    struct dispatch_queue_attr_s *_dqa;
    struct dispatch_group_s *_dg;
    struct dispatch_source_s *_ds;
    struct dispatch_channel_s *_dch;
    struct dispatch_mach_s *_dm;
    struct dispatch_mach_msg_s *_dmsg;
    struct dispatch_semaphore_s *_dsema;
    struct dispatch_data_s *_ddata;
    struct dispatch_io_s *_dchannel;

    struct dispatch_continuation_s *_dc;
    struct dispatch_sync_context_s *_dsc;
    struct dispatch_operation_s *_doperation;
    struct dispatch_disk_s *_ddisk;
    struct dispatch_workloop_s *_dwl;
    struct dispatch_lane_s *_dl;
    struct dispatch_queue_static_s *_dsq;
    struct dispatch_queue_global_s *_dgq;
    struct dispatch_queue_pthread_root_s *_dpq;
    dispatch_queue_class_t _dqu;
    dispatch_lane_class_t _dlu;
    uintptr_t _do_value;
} dispatch_object_t DISPATCH_TRANSPARENT_UNION;

没看懂,放以后研究,换个思路吧,全局搜索,发现还有个同样的宏定义:

define DISPATCH_DECL(name) \
        typedef struct name##_s : public dispatch_object_s {} *name##_t

带入dispatch_queue,翻译后即:

typedef struct dispatch_queue_s : public dispatch_object_s {} *dispatch_queue_t

翻译的通俗易懂点,dispatch_queue_tdispatch_queue_s结构体类型的,同时继承于public dispatch_object_s {}这个类型,再看下这段代码:

typedef struct dispatch_object_s {
private:
    dispatch_object_s();
    ~dispatch_object_s();
    dispatch_object_s(const dispatch_object_s &);
    void operator=(const dispatch_object_s &);
} *dispatch_object_t;
#define DISPATCH_DECL(name) \
        typedef struct name##_s : public dispatch_object_s {} *name##_t
#define DISPATCH_DECL_SUBCLASS(name, base) \
        typedef struct name##_s : public base##_s {} *name##_t
#define DISPATCH_GLOBAL_OBJECT(type, object) (static_cast(&(object)))
#define DISPATCH_RETURNS_RETAINED
#else /* Plain C */
#ifndef __DISPATCH_BUILDING_DISPATCH__
typedef union {
    struct _os_object_s *_os_obj;
    struct dispatch_object_s *_do;
    struct dispatch_queue_s *_dq;
    struct dispatch_queue_attr_s *_dqa;
    struct dispatch_group_s *_dg;
    struct dispatch_source_s *_ds;
    struct dispatch_channel_s *_dch;
    struct dispatch_mach_s *_dm;
    struct dispatch_mach_msg_s *_dmsg;
    struct dispatch_semaphore_s *_dsema;
    struct dispatch_data_s *_ddata;
    struct dispatch_io_s *_dchannel;
} dispatch_object_t DISPATCH_TRANSPARENT_UNION;

得出最终继承于dispatch_object_t

四、GCD线程函数源码探究:

1、同步线程函数:

直接到Libdispatch.dylib中查询

void
dispatch_sync(dispatch_queue_t dq, dispatch_block_t work)
{
    uintptr_t dc_flags = DC_FLAG_BLOCK;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
    }
    _dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}

这里的unlikely字面意思是不大可能发生的,这里不看了,点击查看_dispatch_sync_f,这里传递了dispatch_queue_t 型dqdispatch_block_ t型的work,即队列和队列调度的任务另外传递了一个处理work的封装函数,貌似挺重要,先不管、点击函数_dispatch_sync_f查看,然后依次查看,函数链如下:

static void
_dispatch_sync_f(dispatch_queue_t dq, void *ctxt, dispatch_function_t func,
        uintptr_t dc_flags)
{
    _dispatch_sync_f_inline(dq, ctxt, func, dc_flags);
}

_dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
    #mark 串行队列
    if (likely(dq->dq_width == 1)) {
    #mark 出来个栅栏函数
        return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);
    }
    #mark 类型不符,报错
    if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
        DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
    }

    #mark 在queue的探索中,create方法里queue的alloc方法有看到这个dispatch_lane_t
    dispatch_lane_t dl = upcast(dq)._dl;
    // Global concurrent queues and queues bound to non-dispatch threads
    // always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
    if (unlikely(!_dispatch_queue_try_reserve_sync_width(dl))) {
    #mark 死锁函数
        return _dispatch_sync_f_slow(dl, ctxt, func, 0, dl, dc_flags);
    }

    if (unlikely(dq->do_targetq->do_targetq)) {
    #mark 
        return _dispatch_sync_recurse(dl, ctxt, func, dc_flags);
    }
    _dispatch_introspection_sync_begin(dl);
    _dispatch_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(
            _dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags)));
}

static void
_dispatch_sync_invoke_and_complete(dispatch_lane_t dq, void *ctxt,
        dispatch_function_t func DISPATCH_TRACE_ARG(void *dc))
{
    _dispatch_sync_function_invoke_inline(dq, ctxt, func);
   #mark 像是埋点追踪什么的,不看
    _dispatch_trace_item_complete(dc);
    _dispatch_lane_non_barrier_complete(dq, 0);
}

static inline void
_dispatch_sync_function_invoke_inline(dispatch_queue_class_t dq, void *ctxt,
        dispatch_function_t func)
{
    dispatch_thread_frame_s dtf;
    _dispatch_thread_frame_push(&dtf, dq);
    #mark 这个函数好熟悉,在文章开始打印方法堆栈时有看到,看下
    _dispatch_client_callout(ctxt, func);
    _dispatch_perfmon_workitem_inc();
    _dispatch_thread_frame_pop(&dtf);
}

void
_dispatch_client_callout(void *ctxt, dispatch_function_t f)
{
    _dispatch_get_tsd_base();
    void *u = _dispatch_get_unwind_tsd();
    if (likely(!u)) return f(ctxt);
    _dispatch_set_unwind_tsd(NULL);
    #mark 这里f把ctxt包进去了
    f(ctxt);
    _dispatch_free_unwind_tsd();
    _dispatch_set_unwind_tsd(u);
}

最终发现f(ctxt),即任务work被执行了,我们看下死锁的情况,来一段主队列同步的代码:

    dispatch_sync(dispatch_get_main_queue(), ^{
        NSLog(@"test");
    });

运行崩了,这是一种常见的死锁情况,那么死锁的函数调用链及逻辑是啥样的呢?经过符号断点多次尝试,发现走到这个函数_dispatch_sync_f_slow, 如下:

_dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt,
        dispatch_function_t func, uintptr_t top_dc_flags,
        dispatch_queue_class_t dqu, uintptr_t dc_flags)
{
    dispatch_queue_t top_dq = top_dqu._dq;
    dispatch_queue_t dq = dqu._dq;
    if (unlikely(!dq->do_targetq)) {
        return _dispatch_sync_function_invoke(dq, ctxt, func);
    }

    pthread_priority_t pp = _dispatch_get_priority();
    struct dispatch_sync_context_s dsc = {
        .dc_flags    = DC_FLAG_SYNC_WAITER | dc_flags,
        .dc_func     = _dispatch_async_and_wait_invoke,
        .dc_ctxt     = &dsc,
        .dc_other    = top_dq,
        .dc_priority = pp | _PTHREAD_PRIORITY_ENFORCE_FLAG,
        .dc_voucher  = _voucher_get(),
        .dsc_func    = func,
        .dsc_ctxt    = ctxt,
        .dsc_waiter  = _dispatch_tid_self(),
    };

    _dispatch_trace_item_push(top_dq, &dsc);
    __DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);

    if (dsc.dsc_func == NULL) {
        // dsc_func being cleared means that the block ran on another thread ie.
        // case (2) as listed in _dispatch_async_and_wait_f_slow.
        dispatch_queue_t stop_dq = dsc.dc_other;
        return _dispatch_sync_complete_recurse(top_dq, stop_dq, top_dc_flags);
    }

    _dispatch_introspection_sync_begin(top_dq);
    _dispatch_trace_item_pop(top_dq, &dsc);
    _dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags
            DISPATCH_TRACE_ARG(&dsc));
}

//这里是获取当前队列的线程id
#define _dispatch_tid_self() ((dispatch_tid)_dispatch_thread_port())

#define _dispatch_thread_port() pthread_mach_thread_np(_dispatch_thread_self())

#define _dispatch_thread_self() ((uintptr_t)pthread_self())

解除断点后运行,崩溃,通过lldb指令bt打印函数堆栈:

死锁调试.png

发现走到了_dispatch_sync_f_slow函数中的这条函数__DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq), 点进去看看

static void
__DISPATCH_WAIT_FOR_QUEUE__(dispatch_sync_context_t dsc, dispatch_queue_t dq)
{
    uint64_t dq_state = _dispatch_wait_prepare(dq);
    if (unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))) {
        DISPATCH_CLIENT_CRASH((uintptr_t)dq_state,
                "dispatch_sync called on queue "
                "already owned by current thread");
        #mark 同步函数唤起了一个已经被当前线程占用的队列
    }

...
}

看下判断条件

_dq_state_drain_locked_by(uint64_t dq_state, dispatch_tid tid)
{
    return _dispatch_lock_is_locked_by((dispatch_lock)dq_state, tid);
}

_dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid)
{
    // equivalent to _dispatch_lock_owner(lock_value) == tid
    return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}

这个与判断((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0DLOCK_OWNER_MASK是一个很大的数不为0,显然只有(lock_value ^ tid)==0才能上述判断成立,lock_value由调用链路看出是最外层传进来的dq关联的,而tid是当前的队列的线程id,两者相同就会判断成立从而死锁错误。
这里有点抽象,怎么去理解这里的死锁呢?即我当前一个等待(被调度)的线程和当前队列中已经在等待(执行)的线程是同一个线程,就会死锁。

2、异步线程函数

在Libdispatch.dylib中查询

void
dispatch_async(dispatch_queue_t dq, dispatch_block_t work)
{
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME;
    dispatch_qos_t qos;

    qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}

先看qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);这句代码,点击_dispatch_continuation_init函数依次往下的函数链:

static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu, dispatch_block_t work,
        dispatch_block_flags_t flags, uintptr_t dc_flags)
{
    void *ctxt = _dispatch_Block_copy(work);

    dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        dc->dc_flags = dc_flags;
        dc->dc_ctxt = ctxt;
        // will initialize all fields but requires dc_flags & dc_ctxt to be set
        return _dispatch_continuation_init_slow(dc, dqu, flags);
    }

    dispatch_function_t func = _dispatch_Block_invoke(work);
    if (dc_flags & DC_FLAG_CONSUME) {
        func = _dispatch_call_block_and_release;
    }
    return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}


static inline dispatch_qos_t
_dispatch_continuation_init_f(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu, void *ctxt, dispatch_function_t f,
        dispatch_block_flags_t flags, uintptr_t dc_flags)
{
    pthread_priority_t pp = 0;
    dc->dc_flags = dc_flags | DC_FLAG_ALLOCATED;
   #mark 这看到任务ctxt和f都赋值给了dc
    dc->dc_func = f;
    dc->dc_ctxt = ctxt;
    // in this context DISPATCH_BLOCK_HAS_PRIORITY means that the priority
    // should not be propagated, only taken from the handler if it has one
    if (!(flags & DISPATCH_BLOCK_HAS_PRIORITY)) {
        pp = _dispatch_priority_propagate();
    }
    _dispatch_continuation_voucher_set(dc, flags);
    #mark 这里只需要dc了
    return _dispatch_continuation_priority_set(dc, dqu, pp, flags);
}

static inline dispatch_qos_t
#mark 大致是优先级的设置(异步开启线程,肯定会有优先级的区分)
_dispatch_continuation_priority_set(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu,
        pthread_priority_t pp, dispatch_block_flags_t flags)
{
    dispatch_qos_t qos = DISPATCH_QOS_UNSPECIFIED;
#if HAVE_PTHREAD_WORKQUEUE_QOS
    dispatch_queue_t dq = dqu._dq;

    if (likely(pp)) {
        bool enforce = (flags & DISPATCH_BLOCK_ENFORCE_QOS_CLASS);
        bool is_floor = (dq->dq_priority & DISPATCH_PRIORITY_FLAG_FLOOR);
        bool dq_has_qos = (dq->dq_priority & DISPATCH_PRIORITY_REQUESTED_MASK);
        if (enforce) {
            pp |= _PTHREAD_PRIORITY_ENFORCE_FLAG;
            qos = _dispatch_qos_from_pp_unsafe(pp);
        } else if (!is_floor && dq_has_qos) {
            pp = 0;
        } else {
            qos = _dispatch_qos_from_pp_unsafe(pp);
        }
    }
    dc->dc_priority = pp;
#else
    (void)dc; (void)dqu; (void)pp; (void)flags;
#endif
    return qos;
}

整理一下,_dispatch_continuation_init是一个对任务优先级处理了的函数,并将结果返回给qos接收,那么接下来看_dispatch_continuation_async这个函数,点击查看函数链:

static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
        dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
    if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
        _dispatch_trace_item_push(dqu, dc);
    }
#else
    (void)dc_flags;
#endif
    return dx_push(dqu._dq, dc, qos);
}

到了dx_push是个宏定义,一次点击查询:


#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)

直接看dq_push,库中全局搜索,为方便研究多线程的处理,挑选这段函数

DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_concurrent, lane,
    .do_type        = DISPATCH_QUEUE_CONCURRENT_TYPE,
    .do_dispose     = _dispatch_lane_dispose,
    .do_debug       = _dispatch_queue_debug,
    .do_invoke      = _dispatch_lane_invoke,

    .dq_activate    = _dispatch_lane_activate,
    .dq_wakeup      = _dispatch_lane_wakeup,
    .dq_push        = _dispatch_lane_concurrent_push,
);

_dispatch_lane_concurrent_push在并发队列里被当作dx_push,翻译下return dx_push(dqu._dq, dc, qos);,即_dispatch_lane_concurrent_push(dqu._dq, dc, qos),库中搜索查询发现这段函数:

void
_dispatch_lane_concurrent_push(dispatch_lane_t dq, dispatch_object_t dou,
        dispatch_qos_t qos)
{
    //  reserving non barrier width
    // doesn't fail if only the ENQUEUED bit is set (unlike its barrier
    // width equivalent), so we have to check that this thread hasn't
    // enqueued anything ahead of this call or we can break ordering
    if (dq->dq_items_tail == NULL &&
            !_dispatch_object_is_waiter(dou) &&
            !_dispatch_object_is_barrier(dou) &&
            _dispatch_queue_try_acquire_async(dq)) {
        return _dispatch_continuation_redirect_push(dq, dou, qos);
    }

    #mark 这个跟serial队列的dx_push一样,_dispatch_object_is_barrier(dou) == true也能走到这里,回头看
    _dispatch_lane_push(dq, dou, qos);
}

符号断点_dispatch_continuation_redirect_push调试发现走了这里,点进去看看

static void
_dispatch_continuation_redirect_push(dispatch_lane_t dl,
        dispatch_object_t dou, dispatch_qos_t qos)
{
    if (likely(!_dispatch_object_is_redirection(dou))) {
        dou._dc = _dispatch_async_redirect_wrap(dl, dou);
    } else if (!dou._dc->dc_ctxt) {
        // find first queue in descending target queue order that has
        // an autorelease frequency set, and use that as the frequency for
        // this continuation.
        dou._dc->dc_ctxt = (void *)
        (uintptr_t)_dispatch_queue_autorelease_frequency(dl);
    }

    #mark 获取的是dl.do_targetq
    dispatch_queue_t dq = dl->do_targetq;
    if (!qos) qos = _dispatch_priority_qos(dq->dq_priority);
    #mark 这里的dq是不是上级传过来的dq
    dx_push(dq, dou, qos);
}

这里的dx_push里传入的是dl.do_targetq,这我们在queue的create函数里有看到过,注意这段代码:

_dispatch_lane_create_with_target(const char *label, dispatch_queue_attr_t dqa,
        dispatch_queue_t tq, bool legacy)
{
    if (!tq) {
        tq = _dispatch_get_root_queue(
                qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
                overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
        if (unlikely(!tq)) {
            DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
        }
    }

....
     dq->do_targetq = tq;

....

}

全局搜一下_dispatch_get_root_queue

#mark 注意这里返回的是个globalqueue
static inline dispatch_queue_global_t
_dispatch_get_root_queue(dispatch_qos_t qos, bool overcommit)
{
    if (unlikely(qos < DISPATCH_QOS_MIN || qos > DISPATCH_QOS_MAX)) {
        DISPATCH_CLIENT_CRASH(qos, "Corrupted priority");
    }
    return &_dispatch_root_queues[2 * (qos - 1) + overcommit];
}

完美,实际上这里dx_push传入的dqglobalQueue,进而到这里:


DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_global, lane,
    .do_type        = DISPATCH_QUEUE_GLOBAL_ROOT_TYPE,
    .do_dispose     = _dispatch_object_no_dispose,
    .do_debug       = _dispatch_queue_debug,
    .do_invoke      = _dispatch_object_no_invoke,

    .dq_activate    = _dispatch_queue_no_activate,
    .dq_wakeup      = _dispatch_root_queue_wakeup,
    .dq_push        = _dispatch_root_queue_push,
);

_dispatch_root_queue_push,搜索_dispatch_root_queue_push函数:


void
_dispatch_root_queue_push(dispatch_queue_global_t rq, dispatch_object_t dou,
        dispatch_qos_t qos)
{
...
    _dispatch_root_queue_push_inline(rq, dou, dou, 1);
}

static inline void
_dispatch_root_queue_push_inline(dispatch_queue_global_t dq,
        dispatch_object_t _head, dispatch_object_t _tail, int n)
{
    struct dispatch_object_s *hd = _head._do, *tl = _tail._do;
    if (unlikely(os_mpsc_push_list(os_mpsc(dq, dq_items), hd, tl, do_next))) {
        return _dispatch_root_queue_poke(dq, n, 0);
    }
}

void
_dispatch_root_queue_poke(dispatch_queue_global_t dq, int n, int floor)
{
...
    return _dispatch_root_queue_poke_slow(dq, n, floor);
}

static void
_dispatch_root_queue_poke_slow(dispatch_queue_global_t dq, int n, int floor)
{
...
#if !defined(_WIN32)
    pthread_attr_t *attr = &pqc->dpq_thread_attr;
    pthread_t tid, *pthr = &tid;
#if DISPATCH_USE_MGR_THREAD && DISPATCH_USE_PTHREAD_ROOT_QUEUES
    if (unlikely(dq == &_dispatch_mgr_root_queue)) {
        pthr = _dispatch_mgr_root_queue_init();
    }
#endif
    do {
        _dispatch_retain(dq); // released in _dispatch_worker_thread
        while ((r = pthread_create(pthr, attr, _dispatch_worker_thread, dq))) {
            if (r != EAGAIN) {
                (void)dispatch_assume_zero(r);
            }
            _dispatch_temporary_resource_shortage();
        }
    } while (--remaining);
#else // defined(_WIN32)
#if DISPATCH_USE_MGR_THREAD && DISPATCH_USE_PTHREAD_ROOT_QUEUES
    if (unlikely(dq == &_dispatch_mgr_root_queue)) {
        _dispatch_mgr_root_queue_init();
    }
#endif
    do {
        _dispatch_retain(dq); // released in _dispatch_worker_thread
#if DISPATCH_DEBUG
        unsigned dwStackSize = 0;
#else
        unsigned dwStackSize = 64 * 1024;
#endif
        uintptr_t hThread = 0;
        while (!(hThread = _beginthreadex(NULL, dwStackSize, _dispatch_worker_thread_thunk, dq, STACK_SIZE_PARAM_IS_A_RESERVATION, NULL))) {
            if (errno != EAGAIN) {
                (void)dispatch_assume(hThread);
            }
            _dispatch_temporary_resource_shortage();
        }
#if DISPATCH_USE_PTHREAD_ROOT_QUEUES
        if (_dispatch_mgr_sched.prio > _dispatch_mgr_sched.default_prio) {
            (void)dispatch_assume_zero(SetThreadPriority((HANDLE)hThread, _dispatch_mgr_sched.prio) == TRUE);
        }
#endif
        CloseHandle((HANDLE)hThread);
    } while (--remaining);
#endif // defined(_WIN32)
#else
    (void)floor;
#endif // DISPATCH_USE_PTHREAD_POOL
}

终于看到了pthread_create、hThread = _beginthreadex之类的thread相关的代码了,这就是异步函数中的最终的线程创建。

五、不总结了。

下结合一些题目实战说说GCD

你可能感兴趣的:(iOS系统的任务管理-GCD探究(上))