分数四则混合运算
一、 引入新课
1、出示例1:要做两种中国结,第一种每个用2/5米彩绳,第二种每个用3/5米彩绳,两种中国结各做18个,一共用彩绳多少米?
读题,独立完成。
板演。
说一说自己是怎么想的。
重点说清楚:先算什么,再算什么?
2、比较:这两个算式有什么联系和区别?
生:计算顺序不同。
生:结果相同。
生:符合乘法分配律。
3、小结:
师:算式中有乘法、加法,分数四则混合运算的顺序和整数四则混合运算的顺序相同,也是先算乘除,后算加减。有括号的要先算括号里面的。
二、 运算律推广到分数。
1、师:刚才有同学说到这两个算式符合乘法分配律。回忆一下:什么是乘法分配律?
生回答。
师:乘法分配律有几种形式?分别是什么?
生:两种,一种是添括号,一种是去括号。
2、出示:(2/7+4/9)×63 31×3/7+4×3/7 57×5/8-5/8
学生独立完成,指名说一说自己的方法。
重点说第3题:
生:将题目变成 57×5/8-5/8×1
师:你是怎么想的?
生:57个 5/8减去1个5/8,也就是 57×5/8-5/8×1.
3、出示:3/8×(8/3+32/9)
学生独立完成,指名板演:
3/8×(8/3+32/9)=3/8×8/3+32/9×3/8=1+4/3=1又4/3
3/8×(8/3+32/9)=3/8×8/3+32/9×3/8=1+4/3=7/3
引导辨析:
这两个答案哪个正确?
小结:带分数必须是整数和真分数合起来的数,不能有假分数。
4、出示:
5/9×1/8+4/9÷8 (2/5+4/7)÷1/35 7/8÷(3/4-1/6)
指名板演后,小结:除以一个数要先变成乘这个数的倒数,才能运用运算定律进行简算。
特别强调注意:
第3题,是除以一个算式,不能先变成乘这两个数的倒数 ,而是要先将括号内的结果算出来,然后再乘它的倒数。
另外还有部分学生会出现:(3/4-1/6)÷7/8的错误。
5、出示:
(1)(1/5+3/16)×15×16
试做,板演。
生1:(1/5+3/16)×15×16
=1/5×15×16+3/16×16×15
=48+45
=93
生2:(1/5+3/16)×15×16
=1/5×15+3/16×16
=3+3
=6
引导学生辨析两种做法。
小结:乘法分配律是要让两个加数分别与外面的数相乘,而外面的这个数是15×16的积。所以分配时,不能将这两个数分割开。
(2)出示:(1/5×3/16)×15×16
师:这个题目和上题有什么不同?
生:都是乘法。
师:都是乘法说明是同一种运算了,可以怎么办呢?
生:换位。
学生独立完成。
(1/5×3/16)×15×16=1/5×15×3/16×16=3×3=9
(3)再次比较两题的不同点,说一说在做题时应该注意什么。
三、课堂巩固练习
完成75页练一练。
教学反思:
1、 开门见山,直接引入新课,使学生明确学习目标,为学习新课做好准备。
2、 本节课的重点是学习将整数乘法运算定律推广到分数。而本节课,重点是进行乘法分配律的练习,在新课过程中,练习题的设计循序渐进,由易到难,使学生在辨析、比较的过程中,明确每种类型的分析方法,掌握分配律的两种基本类型。不过在第一组练习中,可以适当加入一些两数之差与一个数相乘的例子,丰富学生对题型的认识。
3、 对于一些除法算式,今天课堂中忽略了一个数除以两数之和(之差)的类型,这是学生认知上的一个难点,也是一个易错点,他们很容易受前面的影响,把除法变成乘法,但却没有分析,这里是除以一个算式,而除法的法则却是除以一个数,才能变成乘它的倒数。
4、 学生的思维灵活性不够,对所学的知识不能灵活应用。今天课堂上涉及到的都是一些特征较为明显的题目,部分学生就只会做这些类型的题目,对于稍有变化的题目,就觉得束手无策,这也反映出有些学生对知识的学习是生搬硬套,自主学习的能力不强。
例如:教材练一练第2小题,看到2/3,3/2就觉得需要用简便算法,也就不管是否符合运算定律,就随便凑数进行简算。
第2题的第(2)题,是需要先将括号内的算式先算出结果,再进行简算,可有些学生一看题目要求简算,但题目中的数据却没有简算的特征,也就不知道该怎么做了,连按部就班地去计算也不会了。
同样的问题 出现在家庭作业中:
22/13-3/2×3/10-11/20 只需把乘法的这一步先算出来,就可以看出简算的方法,但一部分学生就空着不写,不知道该怎么简算。
5、 一些拓展性的题目,其计算方法之前曾经有过渗透,但在遇到具体题目时,多数学生还是难以灵活运用方法将算式进行变形,达到简算的目的。如:
6/13×5/12+5/13×7/12
6、 总体感觉,虽然课堂上稳扎稳打,在基础知识和基本技能的训练方面,我觉得做的还是比较好的。学生基本掌握了分配律的几种类型,也能较为正确地进行简算。但是整节课对于学生思维能力的训练做的不够,如果能设计一些思维发散的题目,以拓展学生的思维,拓宽其思维的深度和广度,应该会更好。
例如可以给出一半的算式 ,让学生把算式补充完整,达到简算的目的,这样让学生自己出题,促使他们自己去思考:符合简算的算式有什么样的特征,从而加深对方法的理解和掌握。