- Python计算机视觉编程 第三章 图像到图像的映射
一只小小程序猿
计算机视觉pythonopencv
目录单应性变换直接线性变换算法仿射变换图像扭曲图像中的图像分段仿射扭曲创建全景图RANSAC拼接图像单应性变换单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里,平面是指图像或者三维中的平面表面。单应性变换具有很强的实用性,比如图像配准、图像纠正和纹理扭曲,以及创建全景图像。单应性变换本质上是一种二维到二维的映射,可以将一个平面内的点映射到另一个平面上的对应点。代码如下:impo
- 计算机视觉——第三章 图像拼接
JMU15980999055
python计算机视觉人工智能
计算机视觉——第三章图像拼接1.图像全景拼接的原理和过程的简要介绍1.1特征点提取和匹配1.2图像配准1.3图像拼接2.实现多图像拼接2.1图片集说明2.2实验代码2.3实验结果及其分析3.两张不同角度的图像拼接3.1图片集说明3.2实验代码3.3实验结果及其分析总结1.图像全景拼接的原理和过程的简要介绍在同一位置拍摄的两幅或者多幅图片是单应性相关的,我们经常使用该约束将很多图像缝补起来,拼成一个
- 相机标定和图像配准
lqjun0827
算法数码相机
相机标定和图像配准介绍1.相机标定代码说明:注意事项:使用标定结果处理图像:代码说明:注意事项:2.图像配准代码说明:注意事项:介绍基础知识参考:相机的内参和外参1.相机标定相机标定是计算机视觉中的一个重要步骤,它用于确定相机的内部参数(如焦距、主点坐标、畸变参数)和外部参数(如相机在世界坐标系中的位置和方向)。以下是一个使用OpenCV库进行相机标定的Python代码示例:importnumpy
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- python代码进行图像配准
@爱编程的郭同学
pythonopencv开发语言
这段代码演示了如何使用ORB特征检测器和特征匹配来进行图像配准。图像配准是将两幅图像对齐,使得它们在同一空间中表现出相似的视觉内容。一、效果图展示二、代码importcv2importnumpyasnp#读取两张图像#image1是RGBimage2是高光谱相机拍的伪RGB#iamge1和iamge2尺寸可以是不一样的image1=cv2.imread('datasets/image/ccc.bm
- 图像配准之HomographyNet
alex1801
HomographyNet图像匹配图像拼接仿射变换
文章名称:DeepImageHomographyEstimation,论文地址:https://arxiv.org/pdf/1606.03798.pdf,代码地址:GitHub-mazenmel/Deep-homography-estimation-Pytorch:DeephomographynetworkwithPytorch1、背景介绍单应性原理被广泛应用于图像配准,全景拼接,机器人定位SLA
- 【图像配准】CVPRW21 - 深度特征匹配 DFM
我是大黄同学呀
读点论文-其他深度学习计算机视觉人工智能
文章目录相识相知回顾收录于CVPR2021ImageMatchingWorkshop,github地址:https://github.com/ufukefe/DFM相识图像配准(ImageRegistration)是计算机视觉领域中的一项重要任务,其旨在将不同角度/时间/模态等条件下获取的两张或多张图像进行匹配、叠加。图像匹配的核心在于找到每两幅图像间的对应关系(可以通过这个对应关系进行相互映射)
- python opencv 基于ORB的传统图像配准算法
Mintcat10
学习笔记pythoncv2
201910130.博客背景病理切片常见的染色方式有H&E(苏木精和伊红)和IHC(免疫组化),用于检测病理组织的癌变情况。大体情况可以参考此处链接。由于cycleGAN能够转换图像模态的特性,由此产生了很多基于改进cycleGAN进行染色模态转换(用H&E染色切片生成虚拟IHC染色切片)的论文。而使用cycleGAN进行模态转换对数据集的基本要求是同类别同组织结构图像之间的转换,所以对H&E和I
- 第十五篇【传奇开心果系列】Python的OpenCV库技术点案例示例:图像配准
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv计算机视觉人工智能
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、常见的图像配准任务介绍二、图像配准任务:图像拼接介绍和示例代码三、图像配准任务:图像校正介绍和示例代码四、图像配准任务:图像配准介绍和示例代码五、基于特征点的配准方法介绍和示例代码六、基于亮度直方图的配准方法介绍和示例代码七、基于相位相关性的配准方法介绍和示例代码八、归纳总结系列短博文目录Python
- RGBD相机深度图像配准(Registration)
bingoplus
深度图像的增强算法rgbd相机SLAM基础知识
机器视觉中,3D相机产生的深度图像(depthimage)通常需要配准(registration),以生成配准深度图像(registeddepthimage)。实际上配准的目的就是想让深度图和彩色图重合在一起,即是将深度图像的图像坐标系转换到彩色图像的图像坐标系下。具体推到参见以下网址:http://www.cnblogs.com/cv-pr/p/5769617.html
- ArcGIS图像配准方法
高堂明镜悲白发
gis
原料准备:待矫正的遥感图像或扫描地图栅格图像,已知投影方式和坐标系的地图图层,AcrMap;打开ArcMap,连接文件夹到待配准的矢量地图与栅格影像所在的位置;点击“添加数据”按钮,待配准的矢量地图与栅格影像;点击“自定义”->“工具条”->“地理配准”,打开地理配准工具条;变换方式选择:点击地理配准工具条的”地理配准“->”变换“,选择合适的投影变换方式;配准第一个点:(1)点击地理配准工具条的
- CUDA Cpp正电子发射断层扫描仪校准和图像重建—蒙特卡洛3D伊辛模型
亚图跨际
数学C/C++计算CUDAc++蒙特卡洛并行计算
要点GPU对比CPU计算正弦和:使用单CPU、使用OpenMP库和CUDACUDA并行计算:3D网格运行内核:线程块,线程线性处理3D数组,并行归约,共享内存,矩阵乘法/平铺矩阵乘法,基本线性代数子程序平铺分区,矢量加载,warp级内在函数和子warp,线程发散和同步,联合组使用2D和3D模板,迭代求解偏微分方程和图像处理使用GPU纹理硬件执行快速插值,图像配准蒙特卡洛模拟3D伊辛模型CUDA流C
- (3)Elastix图像配准:项目实战(2D / 3D)
胖墩会武术
深度学习医学图像配准pythonelastix图像配准
文章目录前言一、3D图像配准1.1、项目实战(3D图像)1.2、参数文件(3D图像)1.2.1、parameter_file_rigid_3D.txt1.2.2、parameter_file_affine_3D.txt1.2.3、parameter_file_bspline_3D.txt二、2D图像配准2.1、项目实战(2D图像)2.2、参数文件(2D图像)2.2.1、parameter_file
- 基于Harris角点的多视角图像全景拼接算法matlab仿真
简简单单做算法
MATLAB算法开发#图像处理matlabHarris角点多视角图像全景拼接全景拼接
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述4.1Harris角点检测4.2图像配准4.3图像变换和拼接4.4全景图像优化5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022a3.部分核心程序function[ImageB]=func_stitch(ImageA,ImageB)%获取ImageA和ImageB的尺寸RR1=size(I
- 2018年认证杯SPSSPRO杯数学建模C题(第二阶段)机械零件加工过程中的位置识别全过程文档及程序
数模竞赛Paid answer
笔记数学建模认证杯数学建模认证杯SPSSPRO数学建模数学建模数据分析
2018年认证杯SPSSPRO杯数学建模基于轮廓提取与图像配准的零件定位问题研究C题机械零件加工过程中的位置识别原题再现: 在工业制造自动生产线中,在装夹、包装等工序中需要根据图像处理利用计算机自动智能识别零件位置,并由机械手将零件自动搬运到特定位置。某零件轮廓如图1所示,图2表示零件搬运前后的位置示意图。 第二阶段问题: 3.题目给出了未经轮廓提取的原始零件图像数据(附件DATA3),请采
- 医学图像配准综述之研究趋势和未来发展2019-09-23
一只大南瓜
6、研究趋势和未来发展在这一部分中,我们总结了深度学习医学图像配准的研究现状和未来发展方向。如图2所示,一些研究趋势已经出现。首先,基于深度学习的医学图像配准在一般应用中似乎遵循着深度学习再医学图像分析中的趋势。其次,无监督变换估计方法最近越来越受到研究领域的重视。此外,基于深度学习的方法始终优于基于传统优化的方法[93]。根据观察到的研究趋势,我们推测以下的研究方向将会在研究领域受到更多的关注。
- 图像配准基于传统特征的方法代码实现(SIFT、SURF、ORB、AKAZE)
朽月初二
图像融合计算机视觉人工智能
自21世纪初以来,图像配准主要使用基于特征的方法。这些方法有三个步骤:关键点检测和特征描述,特征匹配,图像变换。简单的说,我们选择两个图像中的感兴趣点,将参考图像(referenceimage)与感测图像(sensedimage)中的等价感兴趣点进行关联,然后变换感测图像使两个图像对齐。关键点就是感兴趣点,它表示图像中重要或独特的内容(边角,边缘等)。每个关键点由描述符表示,关键点基本特征的特征向
- 刚性配准与非刚性配准
瓴龍
学习笔记CV配准图形学
前言“配准”这个词其实应用的场景很多,例如在AR设备上进行定位需要用到的图像配准,需要提前存储图像的特征信息,然后用AR设备的摄像头实时计算图像特征并进行匹配,配准成功后进行跟踪。本文所说的“配准”,是应用于三维点云或者mesh之中的,在我看过的文献中,“配准”(registration)和“对齐”(alignment)这两个词都用于描述这个意思。根据物体本身是否发生形变,可以分为刚性配准和非刚性
- Moving object detection for vehicle tracking in Wide Area Motion Imagery using 4D filtering(ICPR2016
怎么全是重名
目标检测目标跟踪人工智能
文章目录-AbstractIntroduction快速图像配准方法Conclusionhh-移动目标检测(MOD)方法通常设计用于区分图像序列中相对于背景有运动变化的物体,这些方法基于帧间差异、背景建模或其他时间相关的分析来确定哪些像素或区域属于动态目标。静态目标在连续帧之间没有显著的变化,因此它们在直接应用常规MOD技术时可能不会被有效地识别出来。论文中提到能够检测到微小的瞬时运动目标(TOD)
- 【ITK库学习】使用itk库进行图像配准:变换Transform(三)
leafpipi
ITK学习算法c++图像处理
目录1、itkAffineTransform仿射变换2、itkBSplineDeformableTransformB样条可变形变换1、itkAffineTransform仿射变换该类实现向量空间的仿射变换(例如空间坐标)此类允许定义和操作n维仿射空间(及其关联的向量空间)对其自身的仿射变换,一种常见的用途是定义和操作二维和三维的欧几里得坐标变换,但其他用途也是可能的。仿射变换在数学上定义为线性变换
- 【ITK库学习】使用itk库进行图像配准:变换Transform(一)
leafpipi
ITK学习算法c++图像处理
目录1、itkIdentityTransform一致变换2、itkTranslationTransform平移变换3、itkScaleTransform比例变换4、itkRigid2DTransform刚性2D变换5、itkCenteredRigid2DTransform居中刚性2D变换6、itkEuler2DTransform欧拉2D变换7、itkSimilarity2DTransform2D相
- 【ITK库学习】使用itk库进行图像配准:变换Transform(二)
leafpipi
ITK学习算法c++图像处理
目录1、itkQuaternionRigidTransform四元刚性变换2、itkVersorTransformVersor变换3、itkVersorRigid3DTransformVersor刚体3D变换4、itkEuler3DTransform欧拉3D变换5、itkSimilarity3DTransform3D相似变换6、itkRigid3DPerspectiveTransform3D刚性透
- 使用pytorch-superpoint与pytorch-superglue项目实现训练自己的数据集
万里鹏程转瞬至
深度学习高级实践pytorch人工智能python
superpoint与superglue的组合可以实现基于深度学习的图像配准,官方发布的superpoint与superglue模型均基于coco数据训练,与业务中的实际数据或许存在差距,为此实现基于开源的pytorch-superpoint与pytorch-superglue项目实现训练自己的数据集。然而,在训练pytorch-superpoint有诸多细节需要优化,特此整理成技术文档。本文档描
- 如何从单应矩阵H中分解旋转矩阵R和平移向量t?
机器人那些事儿
视觉SLAM矩阵线性代数自动驾驶机器人
在计算机视觉中,单应矩阵通常用于图像配准和相机标定等任务。下面是使用SVD分解单应矩阵来求解旋转矩阵(R)和平移向量(t)的简要推导过程。假设求解得到一个单应矩阵H:H=[h11h12h13h21h22h23h31h32h33]H=\begin{bmatrix}h_{11}&h_{12}&h_{13}\\h_{21}&h_{22}&h_{23}\\h_{31}&h_{32}&h_{33}\\\en
- 单应性Homography估计:从传统算法到深度学习
baidu_huihui
单应性Homography估计机器人SLAM传统算法到深度学习
目录收起一图像变换与平面坐标系的关系二平面坐标系与齐次坐标系三单应性变换四关于OpenCV中的相关API五深度学习在单应性方向的进展单应性原理被广泛应用于图像配准,全景拼接,机器人定位SLAM,AR增强现实等领域。这篇文章从基础图像坐标知识系为起点,讲解图像变换与坐标系的关系,介绍单应性矩阵计算方法,并分析深度学习在单应性方向的进展。本文为入门级文章,希望能够帮助读者快速了解相关内容。单应性估计在
- OpenCV-Python(14):图像几何变换
图灵追慕者
opencv-pythonopencv图像处理几何变换图像旋转图像平移仿射变换透视变换
背景说明图像几何变换是计算机视觉和图像处理领域中的重要技术。它通过对图像进行平移、旋转、缩放、翻转等操作,改变图像的大小、位置或方向,以实现对图像的变换和处理。图像几何变换在很多应用中都有广泛的应用,例如:视觉定位和导航:通过对图像进行平移、旋转和缩放等变换,可以实现机器人的视觉定位和导航。例如,可以通过将机器人的摄像头图像与地图图像进行匹配,来确定机器人的位置和方向。图像配准:通过对图像进行平移
- 西电计算机视觉作业二图像配准和拼接
oges
机器学习计算机视觉python
对图像配准和拼接ps:配准图片用的学校c楼饮水机的图片,想想觉得在c楼被毛概马原的日子可太累了,仅供参考目录对图像配准和拼接11整体思路22SIFT算法22.1算法原理22.2算法步骤22.3代码实现32.4SIFT算法效果图43RANSAC算法匹配特征点43.1RANSAC算法简介43.2RANSAC基本假设43.3RANSAC基本步骤53.4RANSAC在图像匹配中的应用53.5RANSAC匹
- 【ITK库学习】使用itk库进行图像配准:“Hello World”配准
leafpipi
ITK学习c++算法图像处理
目录1、itkImageRegistrationMethod/itkImageRegistrationMethodv42、itkTranslationTransform3、itkMeanSquaresImageToImageMetric/itkMeanSquaresImageToImageMetric44、itkRegularStepGradientDescentOptimizerv/itkReg
- 【ITK库学习】使用itk库进行图像配准:内插器(插值)
leafpipi
ITK学习图像处理c++算法
目录1、itkNearestNeighborInterpolateImageFunction最近点插值2、itkLinearInterpolateImageFunction线性插值3、itkBSplineInterpolateImageFunctionB样条插值4、itkWindowedSincInterpolateImageFunction窗口化Sinc插值5、itkRayCastInterpo
- 【图像配准】SAR-SIFT改进的SAR图像配准【含Matlab源码 2336期】
Matlab领域
matlab
⛄一、基于SAR-SIFT改进的SAR图像配准合成孔径雷达(syntheticapertureradar,SAR)图像配准的主要目标是对同一或不同传感器在不同时间、不同视点捕获的SAR图像进行配准。SAR因具有全天候成像能力和地物穿透能力,因此具有非常广泛的应用,如变化检测[1]、图像融合[2]、目标检测与识别[3]。图像配准方法可分为两类:基于区域的配准方法和基于特征的配准方法[4]。基于区域的
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓