- 第14章 内容革命:GEO驱动下的官网智能内容架构重塑
白雪讲堂
人工智能大数据
第14章内容革命:GEO驱动下的官网智能内容架构重塑14.2官网GEO优化的实践路径:从“展示橱窗”到“AI信源”在生成式AI成为主流信息获取工具的今天,企业官网的战略地位迎来前所未有的重塑时刻。不再是被动展示信息的静态页面集合,官网正迅速演变为企业知识资产的外化平台,是AI信息整合器主动抓取和引用的核心信息源。GEO(GenerativeEngineOptimization,生成式引擎优化)应运
- 前端使用Axios时的跨域问题
itanly
前端
跨域问题的本质跨域问题源于浏览器的同源策略(Same-OriginPolicy),该策略限制了不同源(协议、域名、端口任一不同)之间的资源交互。Axios作为HTTP客户端,在浏览器环境中受此策略约束。后端配置CORS最标准的解决方案是后端配置CORS(跨域资源共享)。以下是Node.jsExpress框架的示例配置:constexpress=require('express');constcor
- Spring boot 注解实现幂等性
夏壹分享
微服务技术体系java数据库spring
1.添加SpringAOP依赖在pom.xml中添加如下依赖:2.创建自定义幂等性注解创建一个新的Java注解类,通过@interface关键字来定义,并可以添加元注解以及属性。/***《像乌鸦一样思考》让孩子学会观察和独立思考!*https://www.sanzhiwa.top/6718.html*/@Retention(RetentionPolicy.RUNTIME)//程序运行时有效@Tar
- 2025年交通运输与区域经济国际会议(ICTRE 2025)
学术-罗老师
理工科论文笔记论文阅读经济
20252ndInternationalConferenceonTransportationandRegionalEconomy一、大会信息会议简称:ICTRE2025大会地点:中国·重庆收录检索:提交EiCompendex,CPCI,CNKI,GoogleScholar等二、会议简介第二届交通运输与区域经济国际会议即将在中国重庆隆重召开。此次会议致力于搭建一个国际化的学术交流平台,汇聚全球范围内
- AI优化算法实战:使用粒子群优化求解复杂工程问题
AI学长带你学AI
ai
AI优化算法实战:使用粒子群优化求解复杂工程问题关键词:粒子群优化(PSO)、全局优化、工程问题、智能算法、参数调优摘要:本文以“鸟群觅食”为灵感来源,深入浅出地讲解粒子群优化(ParticleSwarmOptimization,PSO)算法的核心原理,并通过机械结构轻量化设计的实战案例,展示其在复杂工程问题中的应用。文章从算法起源到数学模型,从代码实现到工程落地,层层拆解技术细节,帮助读者快速掌
- MSTP技术解析:提升网络负载均衡
Honey\
服务器运维
MSTP背景RSTP/STP的缺陷:RSTP/STP的被阻塞端口阻塞的链路不承载任何流量,无法实现数据的负载均衡;可能有二层次优路径MSTP:通过将一个或多个VLAN映射到instance上,再基于instance进行生成树的计算解决了二层环路问题;提供了二层网络冗余环境;实现流量的负载分担MSTP基本概念MSTRegion(多生成树域):MSTP网络中包含一个或多个MST域MSTI(多生成树实例
- 基于OpenCV图像分割与PyTorch的增强图像分类方案
从零开始学习人工智能
opencvpytorch分类
在图像分类任务中,背景噪声和复杂场景常常会对分类准确率产生负面影响。为了应对这一挑战,本文介绍了一种结合OpenCV图像分割与PyTorch深度学习框架的增强图像分类方案。通过先对图像进行分割提取感兴趣区域(RegionofInterest,ROI),再进行分类,可以有效减少背景干扰,突出关键特征,从而提高分类准确率。该方案在多种复杂场景下表现出色,尤其适用于图像背景复杂或包含多个对象的情况。一、
- 在vue3中通过jspdf+html2canvas实现导出页面pdf功能
落晓星
pdfvue.js前端ruoyi
一、安装依赖npminstallhtml2canvasjspdf二、创建Vue组件下载文件importhtml2canvasfrom'html2canvas';importjsPDFfrom'jspdf';constroute=useRoute();//当前idconstpolicyExplainId=ref(route.params.id);constloading=ref(false);//详
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- 如何在CentOS7上搭建自己的GitLab仓库详解
ytttr873
gitlab
在CentOS7上搭建自己的GitLab仓库的详细步骤如下:更新系统:在开始之前,确保您的系统已经更新到最新版本。打开终端,并执行以下命令:sudoyumupdate-y安装依赖:在安装GitLab之前,需要安装一些依赖项。执行以下命令来安装所需的软件包:sudoyuminstall-ycurlpolicycoreutils-pythonopenssh-server添加GitLab仓库:执行以下命
- 布线后优化(PostRoute Optimization)解析
weixin_45371279
innovus
AboutPostRouteOptimization一、PostRoute优化的核心功能与默认行为在PostRoute模式下,软件默认执行以下操作(除非手动指定其他目标):违规修复优先级:首先处理寄存器到寄存器(Reg2Reg)路径及寄存器到时钟(Reg2Clock)路径组。其次处理默认路径组的建立时间(Setup)违规和设计规则违规(DRV)。技术流程:RC参数提取:计算布线后的寄生电阻(R)和
- Cadence Design Systems EDA介绍(五)--Innovus
小蘑菇二号
笔记
目录Innovus的主要功能1.初始布局规划(Floorplanning)2.详细布局(Placement)3.布线(Routing)4.时序分析与优化(TimingAnalysisandOptimization)5.功耗分析与优化(PowerAnalysisandOptimization)6.面积优化(AreaOptimization)7.签核(Sign-off)Innovus的特点1.高性能2
- 大模型RLHF强化学习笔记(一):强化学习基础梳理Part1
Gravity!
大模型笔记大模型LLM算法机器学习强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.1Intro定义:强化学习是一种机器学习方法,需要智能体通过与环境交互学习最优策略基本要素:状态(State):智能体在决策过程中需要考虑的所有相关信息(环境描述)动作(Action):在环境中可以采取的行为策略(Policy):定义了在给定状态下智能体应该选择哪个动作,目标是最大化智能体的长期累积奖
- js递归性能优化
啃火龙果的兔子
开发DEMOjavascript开发语言ecmascript
JavaScript递归性能优化递归是编程中强大的技术,但在JavaScript中如果不注意优化可能会导致性能问题甚至栈溢出。以下是几种优化递归性能的方法:1.尾调用优化(TailCallOptimization,TCO)ES6引入了尾调用优化,但只在严格模式下有效:'usestrict';//普通递归functionfactorial(n){if(n===1)return1;returnn*fa
- 中国计算机学会(CCF)推荐学术会议-C(软件工程/系统软件/程序设计语言):FPT 2025
爱思德学术
AI编程极限编程重构
FPT2025FPTisthepremierconferenceintheAsia-Pacificregiononfield-programmabletechnologies,reconfigurablecomputingdevicesandsystems.Field-programmabledevicesoffertheflexibilityofsoftwarewiththeperformanc
- 相机-IMU联合标定:IMU更新频率
吃水果不削皮
视觉组合导航ROSVIOkalibr
文章目录简介⚠️IMU频率参数错误设置的影响❌相机-IMU联合标定失败:Optimizationfailed!确定IMU更新频率直接通过rostopichz检查实际频率检查IMU驱动或数据手册从bag文件统计频率在这里插入图片描述修改`update_rate`的注意事项**最终建议****常见问题**简介IMU更新频率参数在Kalibr标定中直接影响标定精度和系统性能。高频率的IMU数据能提供更密
- [CVPR 2025] 高效无监督Prompt与偏好对齐驱动的半监督医学分割
alfred_torres
prompt医学图像分割
CVPR2025|优化SAM:高效无监督Prompt与偏好对齐驱动的半监督医学分割论文信息标题:EnhancingSAMwithEfficientPromptingandPreferenceOptimizationforSemi-supervisedMedicalImageSegmentation作者:AishikKonwer,ZhijianYang,ErhanBas,CaoXiao,Pratee
- 7a系列mrcc xilinx_Xilinx 7 Series FPGA!型号列表
Xilinx7SeriesFPGA型号列表SupportedDevice(1),(2)CoreVersionSignalingEnvironmentVirtex-5XC5VFX70T-FF1136-2C/I(3)(regionalclock)v43.3VonlyVirtex-5XC5VLX50-FF1153-2C/I(3)(regionalclock)v43.3VonlyVirtex-5XC5VL
- SpringBoot 快速实现 IP 地址解析
肥肥技术宅
javaspringboottcp/ipjava
本篇带大家实践在springboot项目中获取请求的ip与详细地址,我们的很多网站app中都已经新增了ip地址显示,大家也可以用在自己的开发中,显得更高级。引入如果使用本地ip解析的话,我们将会借助ip2region,该项目维护了一份较为详细的本地ip地址对应表,如果为了离线环境的使用,需要导入该项目依赖,并指定版本,不同版本的方法可能存在差异。 org.lionsoul ip2region 2.
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 深度解析Lucene IndexWriter 性能优化
微笑听雨。
java进阶教程luceneindexWriter全文检索性能调优内存缓冲
深度解析LuceneIndexWriter性能优化目标:在大规模写入、频繁更新的场景下,既保持吞吐量,又兼顾搜索实时性与系统稳定性。关键调优点内存缓冲:将RAMBufferSizeMB提升至128–1024MB,减少flush次数;必要时配合maxBufferedDocs。合并策略:使用TieredMergePolicy,典型参数为maxMergeAtOnce4–8、segmentsPerTier
- [k8s]-疑问:pod重新分配到同样的node上,pullpolicy是always,会存储两份相同的镜像吗?
开门见山,在Kubernetes中,当Pod被重新调度到同一个Node上,并且其容器的imagePullPolicy设置为Always时,通常是不会导致Node上存储两份完全相同的镜像文件。原因在于容器运行时(如Docker,containerd)的镜像层管理机制。imagePullPolicy:Always的行为:这个策略告诉kubelet(Node上的代理),每次启动Pod中的容器之前,必须尝
- hbase:meta 表解析
有数的编程笔记
HBase
hbase:meta表中存储了Hbase集群中全部表的所有的region信息,在Hbase2.x之后新增了表的状态信息。hbase:meta表的结构非常简单,在Hbase2.x之前整个表只有一个名为info的ColumnFamily。在Hbase2.x新增表状态信息后,增加了名为table的ColumnFamily。HBase保证hbase:meta表始终只有一个Region,这是为了确保meta
- 测试框架重试与跳过机制
追逐此刻
面试python
作为测试架构师,针对测试框架中的重试和跳过机制,我将分别设计一个复杂场景及实现逻辑,并提供具体实例说明。一、重试问题:分布式环境下的幂等性验证重试复杂场景:在微服务架构中,当测试用例涉及跨服务的异步操作(如订单支付流程)时,可能出现:服务间通信超时但实际操作已执行最终一致性导致状态延迟需要验证分布式事务的幂等性框架层设计逻辑:classDistributedRetryPolicy:def__ini
- 蚁群算法及其改进——全局路径规划
~夕上林~
优化算法算法
文章目录蚁群算法运行机制公式原理转移概率信息素更新步骤改进精英蚂蚁策略遗传算法+ACO程序参考文献蚁群算法蚁群算法(AntColonyOptimization,ACO)是由意大利学者MarcoDorigo于1992年提出的一种群智能优化算法,其核心思想源于对蚂蚁群体觅食行为的仿生学模拟。通过模拟蚂蚁群体在觅食过程中通过信息素进行间接通信的行为机制,利用正反馈原理动态调整路径选择策略,最终在复杂搜索
- Vue+Echarts 实现青岛自定义样式地图
我的心巴
vue.jsecharts前端
一、效果二、代码importChartfrom"vue-echarts"import{qingdao_bg,marker}from'../images/index.js'exportdefault{components:{chart:Chart},data(){return{timer:null,index:-1,regionList:[{value:'370202',name:'市南区'},{v
- 使用WS-Trust / STS采样器扩展JMeter
dnc8371
javahttpsopensslapachetomcat
JMeter没有对WS-Security或WS-Trust的任何内置支持,这使我为JMeter开发了此STSSampler–可以在负载测试STS时使任何人的生活变得更好。首先,您需要拥有ApacheJMeter发行版。我正在使用v2.7。然后,您可以从此处下载sts.sampler.zip–解压缩并将“repo”目录直接复制到JMETER_HOME。还将lib.ext目录中的所有jar都复制到JM
- 用无人机和AI守护高原净土:高海拔自然保护区的垃圾检测新方法
是纯一呀
DeepLearningAI无人机人工智能计算机视觉
这篇题为《AutomaticDetectionofScatteredGarbageRegionsUsingSmallUnmannedAerialVehicleLow-AltitudeRemoteSensingImagesforHigh-AltitudeNaturalReserveEnvironmentalProtection》的论文,发表于EnvironmentalScience&Technolo
- 10.区域变换与测量标定
Echo``
Halcon系统化学习算法开发语言人工智能机器学习计算机视觉
目录一、Halcon1.区域的仿射变换2.区域投射变换编辑编辑3.极坐标与笛卡尔坐标的转换4.测量算子5.像素标定二、VS联合编程1.测量助手一、Halcon1.区域的仿射变换*仿射变换*1.变换矩阵*2.affine_trans_region-变换区域*3.affine_trans_image-变换图片*read_image(Image111,'E:/bmp/111.bmp')dev_set_d
- Keil中 L6406E: No space in execution regions with .ANY selector matching heap_4.o(.bss) 错误分析简述
lixzest
stm32C
链接器错误L6406E:Nospaceinexecutionregionswith.ANYselectormatchingheap_4.o(.bss)表明内存分配已超出预期范围,通常与全局/静态变量(.bss段)或堆(Heap)配置有关。以下是逐步解决方案:1.理解错误原因.bss段:存储未初始化的全局变量和静态变量。heap_4.o:通常与FreeRTOS的堆管理(Heap4)相关,Heap4需
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$