算法与数据结构

01链表

BM1 反转链表 1

头插法:将cur的后一个不断放到前面

class Solution:
    def ReverseList(self , head: ListNode)-> ListNode:
        dummy = ListNode(0)
        dummy.next = head
        cur = head #cur始终指向原始的第一个节点
        while cur and cur.next: #下一个还有就将其放到前面
            tmp = cur.next
            cur.next = tmp.next #当tmp是最后一个节点时,cur.next指向tmp.next即空
            tmp.next = dummy.next
            dummy.next = tmp
        return dummy.next

BM2 链表内指定区间内反转 1

class Solution:
    def reverseBetween(self , head: ListNode,m: int, n: int) -> ListNode:
        dummy = ListNode(0)
        dummy.next = head
        pre = dummy
        for _ in range(m-1):
            pre = pre.next
        cur = pre.next
        for _ in range(n-m):
            #不断地改变cur的下一个,将cur的下一个放到pre的前面
            #cur和pre都是不变的
            tmp = cur.next #要改变cur的指向,先保存一下cur的下一个
            cur.next = tmp.next
            tmp.next = pre.next #要改变pre的指向,先保存pre的下一个(用tmp来保存正好正确连接)
            pre.next = tmp
        return dummy.next 

BM3 链表中的节点每k个一组翻转

尾插法,区别于前面头插

class Solution:
    def reverseKGroup(self, head:Optional[ListNode], k: int) -> Optional[ListNode]:
        dummy = ListNode(0)
        dummy.next = head
        pre = tail = dummy
        while True:
            count = k
            while count and tail: #将tail指向当前组的尾部
                count -= 1
                tail = tail.next
            if not tail:
                break
            head = pre.next # head是当前组的第一个,反转后就是最后一个
            while pre.next != tail:
                tmp = pre.next
                pre.next = tmp.next
                tmp.next = tail.next
                tail.next = cur
            pre = head
            tail = head
        return dummy.next

BM4 合并两个排序的链表

class Solution:
    def Merge(self , pHead1: ListNode, pHead2:ListNode) -> ListNode:
        # write code here
        dummy = ListNode(0)
        cur = dummy
        p1 = pHead1
        p2 = pHead2
        while p1 and p2:
            if p1.val < p2.val:
                cur.next = p1
                p1 = p1.next
                cur = cur.next
            else:
                cur.next = p2
                p2 = p2.next
                cur = cur.next
        cur.next = p1 if p1 else p2
        return dummy.next

BM5 合并k个已排序的链表

方法一:维持一个res,与各个链表两两归并

class Solution:
    def mergeKLists(self , lists:List[ListNode]) -> ListNode:
        # write code here
        if not lists: return 
        def mergeTwoLists(head1, head2):
            dummy = ListNode(0)
            cur = dummy
            p1 = head1
            p2 = head2
            while p1 and p2:
                if p1.val <= p2.val:
                    cur.next = p1
                    p1 = p1.next
                else:
                    cur.next = p2
                    p2 = p2.next
                cur = cur.next
            cur.next = p1 if p1 else p2
            return dummy.next
        res = lists[0]
        for head in lists[1:]:
            res = mergeTwoLists(res, head)
        return res

BM6 判断链表中是否有环

方法二:快慢指针,在环上,每次移动一次就,快指针和慢指针的距离会减一,最终总会追及

class Solution:
    def hasCycle(self , head: ListNode) ->bool:
        fast = slow = head
        while fast and fast.next: #因为每次移动两步,所以要考虑fast.next才不会漏掉条件
            fast = fast.next.next
            slow = slow.next
            if fast == slow:
                return True
        return False

BM7 链表中环的入口节点

方法一:双指针

设入口节点前有a个节点,环中有b个节点

class Solution:
    def EntryNodeOfLoop(self, pHead):
        fast = slow = pHead
        while fast and fast.next:
            fast = fast.next.next
            slow = slow.next
                       #第一次相交时fast走步数是slow的两倍 f = 2s,f = s + nb 有s = nb ,再走a步就到入口节点了
            if fast == slow:
                break
        if not fast or not fast.next:
            return
        fast = pHead
        while fast != slow:
            fast = fast.next
            slow = slow.next
        return fast

BM8 链表中倒数最后K个节点

方法一:双指针

class Solution:
    def FindKthToTail(self , pHead: ListNode,k: int) -> ListNode:
        # write code here
        fast = pHead
        while k > 0 and fast:
            fast = fast.next
            k -= 1
        if k > 0: #如果链表长度小于k
            return
        while fast:
            fast = fast.next
            pHead = pHead.next
        return pHead

BM9 删除链表的倒数第n个节点

方法一:双指针

class Solution:
    def removeNthFromEnd(self , head: ListNode,n: int) -> ListNode:
        # write code here
        dummy = ListNode(0)
        dummy.next = head
        slow = dummy
        fast = head
        for _ in range(n):
            fast = fast.next
        while fast:
            fast = fast.next
            slow = slow.next
        slow.next = slow.next.next
        return dummy.next

BM10 两个链表的第一个公共节点

class Solution:
    def FindFirstCommonNode(self , pHead1 ,pHead2 ):
        p1 = pHead1
        p2 = pHead2
        while p1 != p2: #找到第一个相等的节点则返回
            p1 = p1.next if p1 else pHead2
            p2 = p2.next if p2 else pHead1
        return p1

BM11 链表相加(二)

结果返回一个链表

class Solution:
    def addInList(self , head1: ListNode,head2: ListNode) -> ListNode:
        # write code here
        nums1 = []
        nums2 = []
        while head1:
            nums1.append(head1.val)
            head1 = head1.next
        while head2:
            nums2.append(head2.val)
            head2 = head2.next
        c = 0
        tmp = None
        while nums1 or nums2:
            if nums1 and nums2:
                s = nums1.pop() + nums2.pop() +c #用栈就相当于倒序了
                s1 = s % 10
                c = s // 10
                node = ListNode(s1)
                node.next = tmp
                tmp = node
            elif nums1:
                s = nums1.pop() + c
                s1 = s % 10
                c = s // 10
                node = ListNode(s1)
                node.next = tmp
                tmp = node
            else:
                s = nums2.pop() + c
                s1 = s % 10
                c = s // 10
                node = ListNode(s1)
                node.next = tmp
                tmp = node
        if c:
            node = ListNode(c)
            node.next = tmp
            tmp = node
        return tmp

BM12 单链表的排序

归并排序

先用快慢指针找到中点

class Solution:
    def sortInList(self , head: ListNode) ->ListNode:
        if not head or not head.next: returnhead #空节点或者节点为一,什么都不用做,返回
        slow, fast = head, head.next
        while fast and fast.next:
            slow = slow.next
            fast = fast.next.next
        mid = slow.next
        slow.next = None
        left = self.sortInList(head)
        right = self.sortInList(mid)
        
        dummy = cur = ListNode(0)
        while left and right:
            if left.val <= right.val:
                cur.next = left
                left = left.next
            else:
                cur.next = right
                right = right.next
            cur = cur.next
        cur.next = left if left else right
        return dummy.next

BM13 判断一个链表是否为回文结构

class Solution:
    def isPail(self , head: ListNode) ->bool:
        # write code here
        cur = head
        stack = []
        while cur:
            stack.append(cur.val)
            cur = cur.next
        return stack == stack[::-1]

BM14 链表的奇偶重排

奇数节点和偶数节点分别放在一起,重排后输出

方法二:

同样用两个节点记录奇偶,但交替进行,更简洁

class Solution:
    def oddEvenList(self , head: ListNode)-> ListNode:
        if not head: return
        evenhead = head.next
        odd, even = head, evenhead
        while even and even.next:
            odd.next = even.next
            odd = odd.next
            even.next = odd.next
            even = even.next
        odd.next = evenhead
        return head
 

BM15 删除有序链表中重复的元素-I

方法二:如果下一个与当前相等,则下一个变为下一个的下一个

class Solution:
    def deleteDuplicates(self , head: ListNode)-> ListNode:
        if not head: return 
        cur = head
        while cur.next:
            if cur.val == cur.next.val: #相等则连到下一个,直到不等
                cur.next = cur.next.next
            else:
                cur = cur.next
        return head

BM16 删除有序链表中重复的元素-II

删除所有出现的元素,第一个不保留

方法一:用到dummy技巧

并且是标记最后一个重复的元素,最后再链接

class Solution:
    def deleteDuplicates(self , head: ListNode)-> ListNode:
        if not head: return
        dummy = pre = ListNode(0)
        dummy.next = head
        cur = head
        while cur:
            while cur.next and cur.val ==cur.next.val:
                cur = cur.next  #结束循环后cur是最后一个重复的元素
            if pre.next == cur: #没有重复,cur无移动
                pre = cur
            else:
                pre.next = cur.next #跳过重复的元素,相当于删除,pre位置不变
            cur = cur.next
        return dummy.next

02 二分查找

BM17 二分查找-I

实现无重复数字的升序数组的二分查找

class Solution:
    def search(self , nums: List[int], target:int) -> int:
        # write code here
        if not nums: return -1
        i, j = 0, len(nums) - 1
        while i <= j:
            mid = i + ((j - i) >> 1) # 二进制位全部右移1位,相当于除以2
            if nums[mid] == target:
                return mid
            elif nums[mid] < target:
                i = mid + 1
            else:
                j = mid - 1
        return -1

BM18 二维数组中的查找

在一个二维数组array中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,

每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

class Solution:
    def Find(self , target: int, array:List[List[int]]) -> bool:
        # 优先判断特殊
        if len(array) == 0: 
            return False
        n = len(array)
        if len(array[0]) == 0:
            return False
        m = len(array[0])
        i = n-1
        j = 0
        # 从最左下角的元素开始往左或往上
        while i >=0 and j < m: 
            # 元素较大,往上走
            if array[i][j] > target: 
                i -= 1
            # 元素较小,往右走
            elif array[i][j] < target: 
                j += 1
            else:
                return True
        return False

BM19寻找峰值

峰值就是中间数值大于左右两侧的元素值,类似于数学中的极值。

class Solution:
    def findPeakElement(self , nums: List[int])-> int:
        left = 0
        right = len(nums) - 1
        # 二分法
        while left < right: 
            mid = left+ ((right - left)>> 1) # 二进制位全部右移1位,相当于除以2
            # 右边是往下,不一定有波峰
            if nums[mid] > nums[mid+1]: 
                right = mid
            # 右边是往上,一定能找到波峰
            else: 
                left = mid + 1
        # 其中一个波峰
        return right 

BM20数组中的逆序对

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007。

class Solution:
    def InversePairs(self, data):
        # write code here
        if not data:
            return None
        def inversePairsCore(array, counts):
            # nonlocal counts
            if len(array) == 1:
                return array, counts
            mid = len(array) // 2
            left, counts =inversePairsCore(array[:mid], counts)
            right, counts =inversePairsCore(array[mid:], counts)
            
            p1 = 0
            p2 = 0
            result = []
            while p1 < len(left) and p2  right[p2]:
                    counts += len(left) - p1
                    result.append(right[p2])
                    p2 += 1
                else:
                    result.append(left[p1])
                    p1 += 1
            result += left[p1:] + right[p2:]
            return result, counts
        _, counts = inversePairsCore(data, 0)
        return counts%1000000007

BM21 旋转数组的最小数字

class Solution:
    def minNumberInRotateArray(self ,rotateArray: List[int]) -> int:
        # write code here
        left, right = 0, len(rotateArray) - 1
        while left <= right:  
            mid = left+ ((right - left)>> 1) # 二进制位全部右移1位,相当于除以2
            if rotateArray[mid] >rotateArray[right]: left = mid + 1
            elif rotateArray[mid] 

BM22比较版本号

某项目发布项目版本时会有版本号,比如1.02.11,2.14.4等等,现在给你2个版本号version1和version2,请你比较他们的大小。

class Solution:
   def compare(self , version1: str, version2: str) -> int:
       # write code here
       nums1 = [int(i) for i in version1.split('.')]
       nums2 = [int(i) for i in version2.split('.')]
 
       while len(nums1) < len(nums2):
           nums1.append(0)
 
       while len(nums2) < len(nums1):
           nums2.append(0)
 
       for i, j in zip(nums1, nums2):
           if i > j:
                return 1
           elif i < j:
                return -1
 
       return 0

BM23二叉树的前序遍历-

def preorder(self, list: List[int], root: TreeNode):
        # 遇到空节点则返回
        if root == None:
            return
            list.append(root.val) # 先遍历根节点
            self.preorder(list, root.left) # 再取左子树
         self.preorder(list, root.right) # 最后取右子树

def preorderTraversal(self , root: TreeNode) -> List[int]:
    # 添加遍历结果的数组
    list = []
    # 递归前序遍历
    self.preorder(list, root)
    return list
 

BM24二叉树的中序遍历-

class Solution {
public:   
    vectorinorderTraversal(TreeNode* root) {
        vector result;
        stack st;
        if(root!=nullptr) st.push(root);
        while(!st.empty()){
            TreeNode* node=st.top();//node遍历前进的步骤
            //将所有遍历节点和处理节点(放入结果的节点元素)全部入栈,在处理节点之后放入一个空指针(标记法)
            if(node!=nullptr){
                st.pop();//清空栈,避免重复
                if(node->right)st.push(node->right);//入栈顺序:右根左【中序:左根右】
                st.push(node);
                st.push(nullptr);
                if(node->left)st.push(node->left);  
            }
            else{
                st.pop();//删除空节点
                node=st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

BM25二叉树的后序遍历-

/**
 * struct TreeNode {
 *        intval;
 *        structTreeNode *left;
 *        structTreeNode *right;
 *        TreeNode(intx) : val(x), left(nullptr), right(nullptr) {}
 * };
 */
class Solution {
public:
    vector ans;
    void postordervisited(TreeNode* root) {
        if(root == NULL)
            return;
        postordervisited(root -> left);
        postordervisited(root -> right);
        ans.push_back(root -> val);
    }
    vectorpostorderTraversal(TreeNode* root) {
        postordervisited(root);
        return ans;
    }
};

BM26二叉树的层序遍历-

class Solution {
public:
    vector >levelOrder(TreeNode* root) {
        vector> ans;
        queue qu; 
        qu.push(root);
        while(!qu.empty()){
            int len = qu.size(); //队列中的结点个数(也即当前层结点个数)
            vector curlayer; 
            for(int i=0; ival);
                if(tmp->left != NULL)
                    qu.push(tmp->left);
                if(tmp->right != NULL)
                    qu.push(tmp->right);
                qu.pop();  //每处理完一个节点就将其出队
            }
            ans.push_back(curlayer);
        }
        return ans;
    }
};

BM27 按之字形顺序打印二叉树

/*
struct TreeNode {
   int val;
   struct TreeNode *left;
   struct TreeNode *right;
   TreeNode(int x) :
           val(x), left(NULL), right(NULL) {
    }
};
*/
class Solution {
public:
   vector > Print(TreeNode* root) {
       vector >ans;
       // 层数
       int index = 1;
       if(root == NULL)
           return ans;
       
       // 存放相邻两层节点
       queuetree;
       tree.push(root);
       
       while(!tree.empty()) {
           // 存储一层的节点
           vectortemp;
           int len = tree.size();
           
           if(index % 2 != 0) {
                for(int i = 0;i < len;i++) {
                    TreeNode* treenode =tree.front();
                    tree.pop();
                    temp.push_back(treenode-> val);
                    
                    // 下一层入队
                    if(treenode -> left !=NULL)
                        tree.push(treenode-> left);
                    if(treenode -> right !=NULL)
                        tree.push(treenode-> right);
                }
           }
           else {
                stacktree1;
                for(int i = 0;i < len;i++) {
                    tree1.push(tree.front());
                    TreeNode* treenode =tree.front();
                    tree.pop();
                    // 下一层入队
                   if(treenode -> left!= NULL)
                        tree.push(treenode-> left);
                    if(treenode -> right !=NULL)
                        tree.push(treenode-> right);
                }
                while(!tree1.empty()) {
                    TreeNode* treenode =tree1.top();
                    tree1.pop();
                    temp.push_back(treenode-> val);
                }
           }
           index++;
           ans.push_back(temp);
       }
       return ans;
   }   
};

BM28 求二叉树的最大深度

class Solution {
public:
   int maxDepth(TreeNode* root) {
       int ans = 0;
       dfs(root, 0, ans);
       return ans;
    }
   void dfs(TreeNode* root, int depth, int& maxdepth){
       if(root == NULL) return;
        depth++;
       if(depth > maxdepth) maxdepth = depth;
       if(root->left)
           dfs(root->left, depth, maxdepth);
       if(root->right)
           dfs(root->right, depth, maxdepth);
    }
};

03 二叉树

BM29 二叉树中和为某一值的路径

class Solution:
    def hasPathSum(self , root: TreeNode, sum:int) -> bool:
        # write code here
        def dfs(root, sum):
            if not root:
                return False
            if not root.left and notroot.right:
                if root.val == sum:
                    return True
            return dfs(root.left, sum -root.val) or dfs(root.right, sum - root.val)
        
        return dfs(root, sum)

BM30 二叉搜索树与双向链表

class Solution:
    def Convert(self , pRootOfTree ):
        # write code here
       def dfs(cur):
            if not cur:
                return
            dfs(cur.left)
            if self.pre:
                self.pre.right = cur
                cur.left = self.pre
                self.pre = cur
            else:
                self.head = cur #记录头结点
                self.pre = cur #初始化pre
            dfs(cur.right)
        
        if not pRootOfTree:
            return
        self.pre = None
        dfs(pRootOfTree)
        return self.head
 

BM31对称的二叉树

class Solution:
    def isSymmetrical(self , pRoot: TreeNode)-> bool:
        # write code here
        def dfs(A, B):
            if not A and not B:
                return True
            elif not A or not B:
                return False
            elif A.val != B.val:
                return False
            else:
                return dfs(A.left, B.right) anddfs(A.right, B.left)
        if not pRoot:
            return True
        return dfs(pRoot.left, pRoot.right)

BM32 合并二叉树

class Solution:
    def isSymmetrical(self , pRoot: TreeNode)-> bool:
        # write code here
        def dfs(A, B):
            if not A and not B:
                return True
            elif not A or not B:
                return False
            elif A.val != B.val:
                return False
            else:
                return dfs(A.left, B.right) anddfs(A.right, B.left)
        if not pRoot:
            return True
        return dfs(pRoot.left, pRoot.right)

BM33 二叉树的镜像

class Solution:
    def Mirror(self , pRoot: TreeNode) ->TreeNode:
        # write code here
        if not pRoot:
            return
        tmp = pRoot.left
        pRoot.left = self.Mirror(pRoot.right)
        pRoot.right = self.Mirror(tmp)
        return pRoot

BM34 判断是不是搜索二叉树

方法二:中序遍历,递归

中序遍历的的结果应该是递增的,即当前节点的值应该大于前一个节点,否则返回False

class Solution:
    def isValidBST(self, root: TreeNode) ->bool:
        self.pre = float('-inf')
        def recur(root):
            if not root: 
                return True
            l = recur(root.left)  #中序遍历,会一直进入到左子树的尽头,才会进行下面的访问操作
            if root.val <= self.pre:
                return False
            self.pre = root.val
            r = recur(root.right)
            return l and r
 
        return recur(root)

BM35 判断是不是完全二叉树

方法一: 层序遍历,空节点也加入队列,如果出现了空节点,右边还有节点就不是完全二叉树

class Solution:
    def isCompleteTree(self , root: TreeNode)-> bool:
        # write code here
        if not root:
            return True
        queue = [root]
        flag = False
        while queue:
            for _ in range(len(queue)):
                node = queue.pop(0)
                if not node:
                    flag = True
                else: #当前节点不为空
                    if flag: #如果出现了一个空节点,右边还有节点,说明不是完全二叉树
                        return False
                    queue.append(node.left) #空子节点也加入队列
                    queue.append(node.right)
        return True #遍历完返回True

BM36 判断是不是平衡二叉树

写法一:类似LC100 相同的树、BM31对称的树

class Solution:
    def IsBalanced_Solution(self , pRoot:TreeNode) -> bool:
        if not pRoot:
            return True
        left = self.depth(pRoot.left)
        right = self.depth(pRoot.right)
        if abs(left - right) > 1:
            return False
        returnself.IsBalanced_Solution(pRoot.left) and self.IsBalanced_Solution(pRoot.right)
    
    def depth(self, root):
        if not root:
            return 0
        left = self.depth(root.left)
        right = self.depth(root.right)
        return max(left, right) + 1

LC100 相同的树

class Solution:
    def isSameTree(self, p: TreeNode, q:TreeNode) -> bool:
        if not p and not q: #到空了还没有False的就返回True
            return True
        elif not p or not q: #在不是两个都为空的条件下,那么至少有一个不为空。如果有一个为空则就是一个为空另一个不为空,那么一定不相同
            return False
        elif p.val != q.val:
            return False
        else:
            return self.isSameTree(p.left,q.left) and self.isSameTree(p.right, q.right)

BM37 二叉搜索树的最近公共祖先

如果某节点是p、q的最近公共祖先,那么p、q肯定在该节点的两边

如果p、q同在某节点左侧或右侧,则该节点还不是最近的公共祖先

#方法二:递归

class Solution:
    def lowestCommonAncestor(self , root:TreeNode, p: int, q: int) -> int:
        if (p <= root.val and q >=root.val) or (p >= root.val and q <= root.val):
            return root.val
        elif p <= root.val and q <=root.val:
            returnself.lowestCommonAncestor(root.left, p, q)
        else:
            returnself.lowestCommonAncestor(root.right, p, q)

BM38 在二叉树中找到两个节点的最近公共祖先

方法一:递归

class Solution:
    def lowestCommonAncestor(self , root:TreeNode, o1: int, o2: int) -> int:
        # write code here
        if not root:
            return #或标记为 -1
        if root.val == o1 or root.val == o2:
            return root.val
        left =self.lowestCommonAncestor(root.left, o1, o2) #在左子树中寻找公共祖先
        right =self.lowestCommonAncestor(root.right, o1, o2) #在右子树中寻找公共祖先
        if not left:
            return right #左子树中没找到,则在右子树中
        if not right:
            return left #右子树中没找到吗,则在左子树中
        return root.val #否则是当前节点(两边都找到)

BM39 序列化二叉树

class Solution:
    index = 0
    s = ''
    def SerializeFunc(self, root):
        # write code here
        if not root:
            self.s += '#'
            return
        self.s += str(root.val) + '!'
        self.SerializeFunc(root.left)
        self.SerializeFunc(root.right)
    
    def Serialize(self, root):
        if not root:
            return '#'
        self.SerializeFunc(root)
        return self.s
        
    def Deserialize(self, s):
        #write code here
        if s == '#':
            return
        if self.index >= len(s) ors[self.index] == '#':
            self.index += 1
            return None
        val = 0 
        while s[self.index] != '!' andself.index != len(s):
            val = val * 10 + int(s[self.index])
            self.index += 1
        root = TreeNode(val)
        if self.index == len(s):
            return root
        else:
            self.index += 1
        root.left = self.Deserialize(s)
        root.right = self.Deserialize(s)
        return root
 

BM40 重建二叉树

根据前序遍历和中序遍历结果重建二叉树

class Solution:
    def reConstructBinaryTree(self , pre:List[int], vin: List[int]) -> TreeNode:
        # write code here
        #left, right是子树的边界
        def recur(root, left, right): ##注意这里的root是当前子树的根在pre中的索引
            if left > right:
                return 
            node = TreeNode(pre[root])
            i = dic[pre[root]] #根在vin中的索引
            node.left = recur(root+1, left,i-1)
            node.right = recur(root+i-left+1, i+1,right)
            return node
        dic = {}
        for i, v in enumerate(vin):
            dic[v] = i
        return recur(0, 0, len(vin)-1)
 

BM41 输出二叉树的右视图

方法一:建树+BFS

class Solution:
    def solve(self , xianxu: List[int],zhongxu: List[int]) -> List[int]:
        # write code here
        def recur(root, left, right):
            if left > right:
                return
            node = TreeNode(xianxu[root])
            i = dic[xianxu[root]] #在中序遍历中的索引
            node.left = recur(root+1, left,i-1)
            node.right = recur(root+i-left+1,i+1, right)
            return node
        dic = {}
        for i in range(len(zhongxu)):
            dic[zhongxu[i]] = i
        root = recur(0, 0, len(zhongxu)-1)
        
        #层序遍历
        res = []
        queue = [root]
        while queue:
            n = len(queue)
            for i in range(n):
                node = queue.pop(0)
                if i == n-1:
                    res.append(node.val)
                if node.left:queue.append(node.left)
                if node.right:queue.append(node.right)
        return res
 
 

04 堆、栈、队列

BM42 用两个栈实现队列

class Solution:
    def __init__(self):
        self.stack1 = []
        self.stack2 = []
    def push(self, node):
        # write code here
        self.stack1.append(node)
    def pop(self):
        # return xx
        if not self.stack2:
            while self.stack1:
                self.stack2.append(self.stack1.pop())
        if self.stack2:
            return self.stack2.pop()

BM43 包含min函数的栈

class Solution:
    A = []
    B = []
    def push(self, node):
        # write code here
        self.A.append(node)
        if not self.B or node <= self.B[-1]:
            self.B.append(node)
    def pop(self):
        # write code here
        val = self.A.pop()
        if self.B[-1] == val:
            self.B.pop()
        return val
    def top(self):
        # write code here
        return self.A[-1]
        
    def min(self):
        # write code here
        return self.B[-1]

BM44 有效括号序列

给出一个仅包含字符’(‘,’)‘,’{‘,’}‘,’[‘和’]',的字符串,判断给出的字符串是否是合法的括号序列

class Solution:
    def isValid(self , s: str) -> bool:
        # write code here
        #([]{})
        stack = []
        for c in s:
            if c == '(' or c == '[' or c =='{':
                stack.append(c)
            elif not stack: #必须有左括号才能遇到右括号
                return False
            elif c == ')':
                if stack.pop() != '(':
                    return False
            elif c == ']':
                if stack.pop() != '[':
                    return False
            else:
                if stack.pop() != '{':
                    return False
        return not stack

BM45 滑动窗口的最大值

方法一:维持一个单调递减的双向队列

class Solution:
    def maxInWindows(self , num: List[int],size: int) -> List[int]:
        from collections import deque
        res = []
        dq = deque()
        for i in range(size):
            while dq and num[dq[-1]] 

BM46 最小的K个数

class Solution {
public:
    vectorGetLeastNumbers_Solution(vector input, int k) 
    {
        vector res;
        if(k>input.size())
        {
            return res;
        }
        priority_queue que;
        for(auto it:input)
        {
            que.push(it);
            if(que.size()>k)
            {
                que.pop();
            }
        }
        while(que.size())
        {
            int it=que.top();
            que.pop();
            res.push_back(it);
        }
        return res;
    }
};

BM47 寻找第K大值

快排写法一:

class Solution:        
    def quick_sort(arr, l, r):
        if l >= r:
            return
        i, j = l, r
        while i < j:
            while i < j and arr[j] <=arr[l]: j -= 1
            while i < j and arr[i] >=arr[l]: i += 1
            arr[i], arr[j] = arr[j], arr[i]
        arr[i], arr[l] = arr[l], arr[j]
        quick_sort(arr, l, i-1)
        quick_sort(arr, i+1, r)

    quick_sort(a, 0, n-1)

BM48 数据流中的中位数

方法二:

插入排序

class Solution:
    A = []
    def Insert(self, num):
        self.A.append(num)
        for i in range(len(self.A)-1, 0, -1):
            if self.A[i] < self.A[i-1]:
                self.A[i], self.A[i-1] =self.A[i-1], self.A[i]
            else:
                break
    def GetMedian(self):
        n = len(self.A)
        if n % 2:
            return self.A[n//2]
        else:
            return (self.A[(n-1)//2] +self.A[n//2]) / 2
 

BM49 表达式求值

方法一:栈+递归

class Solution:
    def solve(self , s: str) -> int:
        # write code here
        s.strip()
        stack = []
        res = 0
        num = 0
        sign = '+'
        index = 0
        while index < len(s):
            if s[index] == '(':
                lens = 1 #当前还有几个左括号
                end = index + 1
                while lens > 0:
                    if s[end] == '(':
                        lens += 1
                    if s[end] == ')':
                        lens -= 1
                    end += 1
                num = self.solve(s[index + 1:end - 1])
                index = end - 1
                continue
            if '0' <= s[index] <='9':
                num = num * 10 + int(s[index])
            if not '0' <= s[index] <= '9'or index == len(s) - 1:
                if sign == '+':
                    stack.append(num)
                elif sign == '-':
                    stack.append(-1 * num)
                elif sign == '*':
                    stack.append(stack.pop() *num)
                num = 0
                sign = s[index]
            index += 1
        while stack:
            res += stack.pop()
        return res
 

05 哈希

BM50 两数之和

注意这里数组下标从1开始算

class Solution:
    def twoSum(self , numbers: List[int],target: int) -> List[int]:
        # write code here
        dic = {}
        for i, num in enumerate(numbers):
            if target - num in dic:
                return [dic[target-num]+1, i+1]
            dic[num] = i   #关键是遍历一次就将其记录下来,避免重复遍历
        return

BM51数组中出现次数超过一半的数字

方法一:摩尔投票

不同的两两抵消

class Solution:
    def MoreThanHalfNum_Solution(self ,numbers: List[int]) -> int:
        # write code here
        count = 0
        for num in numbers:
            if count == 0:
                x = num
                count += 1
            else:
                if num == x:
                    count += 1
                else:
                    count -= 1
        return x
 

BM52 数组中只出现一次的两个数字

最优的应该是异或位运算发方法

方法一:哈希统计

class Solution:
    def FindNumsAppearOnce(self , array:List[int]) -> List[int]:
        # write code here
        dic = {}
        res = []
        for num in array:
            if num in dic:
                dic[num] += 1
            else:
                dic[num] = 1
        for k, v in dic.items():
            if v == 1:
                res.append(k)
        res.sort()
        return res
 

BM53 缺失的第一个正整数

方法一:哈希

class Solution:
    def minNumberDisappeared(self , nums:List[int]) -> int:
        # write code here
        A = set()
        for num in nums:
            A.add(num)
        i = 1
        while 1:
            if i not in A:
                return i
                break
            i += 1
 

BM54 三数之和

方法一:先排序,然后遍历做双指针

class Solution:
    def threeSum(self , num: List[int]) ->List[List[int]]:
        # write code here
        num.sort()
        res = []
        for k in range(len(num) - 2):
            if num[k] > 0:
                break
            if k > 0 and num[k] == num[k-1]:
                continue
            i, j = k + 1, len(num) - 1
            while i < j:
                s = num[k] + num[i] + num[j]
                if s < 0:
                    i += 1
                    while i < j and num[i]== num[i-1]: i += 1
                elif s > 0:
                    j -= 1
                    while i < j and num[j]== num[j+1]: j -= 1
                else:
                    res.append([num[k], num[i],num[j]])
                    i += 1
                    j -= 1
                    while i < j and num[i] ==num[i-1]: i += 1
                    while i < j and num[j]== num[j+1]: j -= 1 #注意这里是num[j+1]
        return res
 

06 递归,回溯

BM55 没有重复数字的全排列

LC46 题解

方法一:回溯

选一个,后接剩下没选过的的数字的全排列

达到深度则返回(当前填充到最后一个)

写法二:选过的则去掉,写法一是选过的则标记

class Solution:
    def permute(self, nums: List[int]) ->List[List[int]]:
        def dfs(nums, path, res):
            if not nums:
                res.append(path)
                return
            for i in range(len(nums)):
                dfs(nums[:i] + nums[i+1:],path+[nums[i]], res)
 
        path, res =[], []
        dfs(nums, path, res)
        return res
 

BM56 有重复数字的全排列

class Solution:
    def permuteUnique(self , num: List[int])-> List[List[int]]:
        # write code here
        def dfs(num, size, index, path, used,res): #index表示当前要选择的位置
            if index == size:
                res.append(path[:])
                return 
            for i in range(size):
                #i和i-1相等的情况下, 只有i-1是用过在才递归,这样保证只出现一次1,1,2
                if not used[i] and (i == 0  or num[i] != num[i-1] or used[i-1]): 
                    used[i] = True
                    path.append(num[i])
                    dfs(num, size, index + 1,path, used, res)
                    used[i] = False
                    path.pop()
        num.sort()
        used = [False for _ in range(len(num))]
        res, path = [], []
        dfs(num, len(num), 0, path, used, res)
        return res
 

LC78 子集

class Solution:
    def subsets(self, nums: List[int]) ->List[List[int]]:
        def dfs(nums, start, path, res):
            res.append(path[:])
            for i in range(start, len(nums)):
                path.append(nums[i])
                dfs (nums, i+1, path, res)
                path.pop()
        res, path = [], []
        dfs(nums, 0, path, res)
        return res
 

LC39 组合总和

class Solution:
    def combinationSum(self, candidates:List[int], target: int) -> List[List[int]]:
        def dfs(nums, start, size, path, res,target):
            if target < 0:
                return
            if target == 0:
                res.append(path[:])
                return 
            for i in range(start, size):
                path.append(nums[i])
                target -= nums[i]
                dfs(nums, i, size, path, res,target) #注意这里仍然是从i开始,可以重复选取
                # dfs(nums, i, size, path, res,target - nums[i]) #如果在这里计算target,传进去的是计算出来的一个新值,有新的地址,返回当前target不变
                target += nums[i]
                path.pop()
        
        path, res = [], []
        dfs(candidates, 0, len(candidates),path, res, target)
        return res

BM57岛屿数量

方法一:回溯

遍历行和列进行,如果当前为岛屿1,则进入dfs

在dfs中将其置为0,并且dfs其上下上左右

dfs终止的条件是当前位置为0或者超出边界

class Solution:
    def solve(self , grid: List[List[str]])-> int:
        # write code here
        def dfs(grid, i, j):
            nr, nc = len(grid), len(grid[0])
            if not 0 <= i < nr ornot  0 <= j < nc or grid[i][j] =='0': #终止条件
                return 
            grid [i][j] = '0' #标记为0避免重复访问
            dfs(grid, i - 1, j) 
            dfs(grid, i + 1, j)
            dfs(grid, i, j - 1)
            dfs(grid, i, j + 1)
 
        nr, nc = len(grid), len(grid[0])
        count = 0
        for i in range(nr):
            for j in range(nc):
                if grid[i][j] == '1':
                    count += 1
                    dfs(grid, i, j)
        return count
 

BM58 字符串的排列

有重复的需要先排序

class Solution:
    def Permutation(self , str: str) ->List[str]:
        # write code here
        def dfs(s, size, index, path, used,res):
            if index == size:
                res.append(path)
                return
            for i in range(size):
                if not used[i] and (i == 0 ors[i] != s[i-1] or used[i-1]):
                    used[i] = True
                    path += s[i]
                    dfs(s, size, index+1, path,used, res)
                    path = path[:-1]
                    used[i] = False
        str = sorted(str) #注意str没有str.sort
        used = [False for _ in range(len(str))]
        res, path = [], ''
        dfs(str, len(str), 0, path, used, res)
        return res
 

BM59 N皇后问题

方法一:回溯

用dfs遍历行

对于每一行,遍历每一列,并看当前列是不是可以放Q的位置

放满n行结果+1

class Solution:
    def Nqueen(self , n: int) -> int:
        # write code here
        def dfs(r, res):
            if r == n:
                res += 1
                return res
            for i in range(n):
                if i in columns or r - i indiagonals1 or r + i in diagonals2:
                    continue
                columns.add(i)
                diagonals1.add(r - i)
                diagonals2.add(r + i)
                res = dfs(r + 1, res)
                columns.remove(i)
                diagonals1.remove(r - i)
                diagonals2.remove(r + i)
            return res
        columns = set()
        diagonals1 = set()
        diagonals2 = set()
        res = 0
        return dfs(0, res)

注意:

Python参数传递采用的肯定是“传对象引用”的方式。实际上,这种方式相当于传值和传址的一种综合。如果函数收到的是一个可变对象(比如字典或者列表)的引用,就能修改对象的原始值——相当于传址。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能直接修改原始对象——相当于传值。所以以下代码返回的结果是0

class Solution:
    def Nqueen(self , n: int) -> int:
        # write code here
        def dfs(r, res):
            if r == n:
                res += 1
            for i in range(n):
                if i in columns or r - i indiagonals1 or r + i in diagonals2:
                    continue
                columns.add(i)
                diagonals1.add(r - i)
                diagonals2.add(r + i)
                dfs(r + 1, res)
                columns.remove(i)
                diagonals1.remove(r - i)
                diagonals2.remove(r + i)
                
        columns = set()
        diagonals1 = set()
        diagonals2 = set()
        res = 0
        dfs(0, res)
        return res
 

返回可行棋盘版本:

class Solution:
    def solveNQueens(self, n: int) ->List[List[str]]:
        def generateBoard():
            board = list()
            for i in range(n):
                row[queens[i]] = "Q"#row是一维向量,表示当前行的情况,i表示当前是第几行,queens[i]表示第几列;即当前第i行的第几列是Q
                board.append("".join(row))
                row[queens[i]] = "."
            return board
 
        def backtrack(row: int):
            if row == n:
                board = generateBoard()
                solutions.append(board)
            else:
                for i in range(n): #遍历所有的列
                    if i in columns or row - iin diagonal1 or row + i in diagonal2:
                        continue
                    queens[row] = i #第row行的第i列; 使用一个数组记录每行放置的皇后的列下标,依次在每一行放置一个皇后
                    columns.add(i)
                    diagonal1.add(row - i) #同是左上-右下对角线的话,行坐标与列坐标之差相等
                    diagonal2.add(row + i) #同是做下-右上对角线,行坐标与列坐标之和相等
                    backtrack(row + 1) #遍历行
                    columns.remove(i)
                    diagonal1.remove(row - i)
                    diagonal2.remove(row + i)
                    
        solutions = list()
        queens = [-1] * n
        columns = set()
        diagonal1 = set()
        diagonal2 = set()
        row = ["."] * n
        backtrack(0)
        return solutions
 

BM60 括号生成

方法一:回溯

相比于全排列,只是没有了从所给nums中选择的过程,而是直接添加 ‘(’ 或 ‘)’

全排列 indexlen(nums) 时添加结果,这里 s2*n 时添加结果

class Solution:
    def generateParenthesis(self, n: int) ->List[str]:
        def dfs(s, left, right):
            if len(s) == 2 * n:
                res.append(''.join(s))
                return
            if left < n:
                s.append('(')
                dfs(s, left + 1, right)
                s.pop()
            if right < left: #如果写right < n, 就包括了left <= right的情况, 这是不该加右括号的
                s.append(')')
                dfs(s, left,  right + 1)
                s.pop()
        res = []
        s = []
        dfs(s, 0, 0)
        return res

BM61 最长增长路径

方法一:深度优先搜索+保存中间结果

记忆化搜索

class Solution:
    defsolve(self , matrix: List[List[int]]) -> int:
        if not matrix: return 
        m, n = len(matrix), len(matrix[0])
        memo = [[0] * n for _ in range(m)]
        def dfs(x, y):
            if memo[x][y] != 0: returnmemo[x][y] #避免重复计算;相当与动态规划用dp保存子问题的解
            memo[x][y] += 1
            for new_x, new_y in [(x - 1, y), (x+ 1, y), (x, y - 1), (x, y + 1 )]:
                if 0 <= new_x < m and 0<= new_y < n and matrix[x][y] < matrix[new_x][new_y]:
                    memo[x][y] =max(memo[x][y], dfs(new_x, new_y) + 1) #每能遍历一个,长度就加一
            return memo[x][y] #一定是遍历到最后超出边界或者没有增长路径才返回,每个格子结果唯一
        res = 0
        for i in range(m):
            for j in range(n):
                res = max(res, dfs(i, j))
        return res
 

07 动态规划

BM62 斐波那契数列

写法一:

class Solution:
    def Fibonacci(self , n: int) -> int:
        a, b = 1, 1
        if n == 1 or n ==2:
            return 1
        for i in range(n-2):
            tmp = a
            a = b
            b += tmp
        return b

BM63 跳台阶

class Solution:
    def jumpFloor(self , number: int) ->int:
        #1, 2, 
        #dp[i] = dp[i-1] + dp[i-2]]
        a, b = 1, 2
        for _ in range(number):
            tmp = a
            a = b
            b += tmp
        return a

BM64最小花费爬楼梯

方法一:

用dp保存跳到第i个阶梯的费用,i可以从i-2开始跳,跳两个台阶,也可以从i-1开始跳,跳一个台阶

转移方程:dp[i] = min(cost[i-2] + dp[i-2], cost[i-1] +dp[i-1])

关键是递推过程,而不是模拟具体怎么跳

class Solution:
    def minCostClimbingStairs(self , cost:List[int]) -> int:
        n = len(cost)
        dp = [0] * (n + 1)
        for i in range(2, n + 1): #题目的跳到顶部是越过n-1到n
            dp[i] = min(cost[i-2] + dp[i-2],cost[i-1] + dp[i-1])
        return dp[n]

BM65 最长公共子序(二)

涉及两个字符串,一般是动态规划一般是二维的

class Solution:
    def LCS(self , s1: str, s2: str) -> str:
        # write code here
        m, n = len(s1), len(s2)
        dp = [[0] * (n + 1) for _ in range(m +1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if s1[i-1] == s2[j-1]:
                    dp[i][j] = dp[i - 1][j - 1]+ 1
                else:
                    dp[i][j] = max(dp[i -1][j], dp[i][j - 1]) #此s1[i-1]不一定等于s2[j], s1[i-1]不一定等于s2[j]
        i, j = m, n
        s = []
        while dp[i][j] != 0:
            if dp[i][j] == dp[i - 1][j]:
                i -= 1
            elif dp[i][j] == dp[i][j - 1]:
                j -= 1
            elif dp[i][j] > dp[i-1][j - 1]:#说明s1[i - 1] == s2[j - 1]
                i -= 1
                j -= 1
                s.append(s1[i])
        if not s:
            return '-1'
        else:
            return ''.join(s[::-1])

BM66 最长公共子串

方法一:枚举

暴力法是遍历str1中的每个起点,并遍历每个长度,看是在str2中。复杂度太大

改进方法是维持一个最大长度,看i往前max_len+1个字符在不在str2中,在则更新

class Solution:
    def LCS(self , str1: str, str2: str) ->str:
        if len(str1) > len(str2):
            str1, str2 = str2, str1
        max_len = 0
        for i in range(len(str1)):
            if str1[i - max_len : i + 1] instr2: #第i个字符及往前max_len+1个字符在str2中才更新最长字符
                res = str1[i - max_len : i + 1]
                max_len += 1
        return res
 

BM67 不同路径的数目(一)

方法一:动态规划

class Solution:
    def uniquePaths(self , m: int, n: int)-> int:
        # write code here
        dp = [[1] * n] + [[1] + [0] * (n - 1)for _ in range(m - 1)]
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i][j - 1] + dp[i- 1][j]
        return dp[m - 1][n - 1]

BM68 矩阵的最小路径和

方法一:动态规划

class Solution:
    def minPathSum(self , matrix:List[List[int]]) -> int:
        m, n = len(matrix), len(matrix[0])
        for i in range(m):
            for j in range(n):
                if i == 0 and j == 0:
                    matrix[i][j] = matrix[i][j]
                    continue
                if i == 0:
                    matrix[i][j] += matrix[i][j- 1]
                elif j == 0:
                    matrix[i][j] += matrix[i-1][j]
                else:
                    matrix[i][j] +=min(matrix[i-1][j], matrix[i][j -1])
        return matrix[m -1][n -1]

BM69 把数字翻译成字符串

有一种将字母编码成数字的方式:‘a’->1, ‘b->2’, … , ‘z->26’。

我们把一个字符串编码成一串数字,再考虑逆向编译成字符串。

由于没有分隔符,数字编码成字母可能有多种编译结果,例如 11 既可以看做是两个 ‘a’ 也可以看做是一个‘k’。但 10 只可能是 ‘j’,因为 0 不能编译成任何结果。

方法一:动态规划

class Solution:
    def solve(self , nums: str) -> int:
        # 当前位单独翻译dp[i] = dp[i-1], 与前一位一起翻译 dp[i] = dp[i - 2]
        n = len(nums)
        dp = [0] * (n + 1)
        dp[0] = 1
        dp[1] = 1
        for i in range(2, n +1):
            if nums[i - 1] == '0' and nums[i -2] != '1' and nums[i - 2] != '2':
                return 0
            elif '11' <= nums[i - 2 : i]<= '19' or '21' <= nums[i - 2 : i] <= '26':
                dp[i] = dp[i - 2] + dp[i - 1]
            elif nums[i - 2 : i] == '10' ornums[i - 2 : i] == '20':
                dp[i] = dp[i - 2]
            else:
                dp[i] = dp[i - 1]
        return dp[n]

LC 剑指offer 46. 把数字翻译成字符串

给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 “a”,1 翻译成 “b”,……,11 翻译成 “l”,……,25 翻译成 “z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。

写法一:初始化一个第一个状态,i表示当前字符的下标加一

class Solution:
    def translateNum(self, num: int) -> int:
        s = str(num)
        n = len(s)
        dp = [0] * (n + 1)
        dp[0] = 1
        dp[1] = 1
        for i in range(2, n + 1):
            if '10' <= s[i - 2 : i] <='25':
                dp[i] = dp[i - 2] + dp[i - 1]
            else:
                dp[i] = dp[i - 1]
        return dp[n]

BM70 兑换零钱(一)

方法一:动态规划

dp[i]根据dp[0]~dp[i-1]得到

class Solution:
    def minMoney(self , arr: List[int], aim:int) -> int:
        dp = [float('+inf')] * (aim + 1)
        dp[0] = 0
        for i in range(1, aim + 1): #遍历1~aim元
            for j in range(len(arr)):
                if arr[j] <= i:
                    #在遍历硬币的时候,i还是i,并没有减少,只是不断查看dp[i - arr[j]]看哪个dp[0]~dp[i-1]中的dp最小,并维护最小值
                    dp[i] = min(dp[i], dp[i -arr[j]] + 1)
        return dp[aim] if dp[aim] !=float('+inf') else -1

BM71 最长上升子序列(一)

方法一:动态规划

要找到最长的递增子序列长度,每当我们找到一个位置,它是继续递增的子序列还是不是,它选择前面哪一处接着才能达到最长的递增子序列

dp[i] 表示以arr[i]结尾的最长子序列长度

class Solution:
    def LIS(self , arr: List[int]) -> int:
        if not arr:
            return 0
        n = len(arr)
        dp = [1] * n
        for i in range(n):
            for j in range(i):
                if arr[j] < arr[i]:
                    dp[i] = max(dp[i], dp[j] +1) #已知dp[0] ~ dp[i - 1]
        return max(dp) #这里不是dp[n - 1], dp[i]的值代表以arr[i]结尾的最长子序列长度,不是前i个数字的最长子序列,最长子序列不一定以arr[i]结尾

BM72 连续子数组的最大和

方法一:动态规划

#dp[i] 代表以元素 array[i] 为结尾的连续子数组最大和。

#dp[i] = max(dp[i -1] + array(i) , array[i] )

class Solution:
    def FindGreatestSumOfSubArray(self , array:List[int]) -> int:
        # write code here
        if len(array) == 1:
            return array[0]
        s = array[0]
        res = float('-inf')
        for num in array[1:]:
            s = max(s + num, num)
            res = max(res, s)
        return res

BM73 最长回文子串

class Solution:
    def getLongestPalindrome(self , A: str)-> int:
        n = len(A)
        dp = [[False] * n for _ in range(n)]#dp[i][j]表示i到j的子串是否为回文串
        for i in range(n):
            dp[i][i] = True
        max_len = 1 #需要记录最大长度       
        for L in range(2, n + 1): #状态转移的时候,是从较短的字符向较长的字符转移,所以循环的时候先枚举长度
            for i in range(n):
                j = i + L -1
                if j > n -1:
                    break
                
                if A[i] != A[j]:
                    dp[i][j] = False
                else:
                    if L <= 3:
                        dp[i][j] = True
                    else:
                        dp[i][j] = dp[i + 1][j- 1]
                if dp[i][j] and L > max_len:
                    max_len = L
                    
        return max_len

BM74 数字字符串转化成ip地址

与子集、组合总和问题一样,需要定义一个起点,然后遍历;这里需要通过长度和数值大小进行约束剪枝

class Solution:
    def restoreIpAddresses(self, s: str) ->List[str]:
        seg_count = 4
        res = []
        segments = [0] * seg_count
 
        def dfs(segId, segStart):
            if segId == 4:
                if segStart == len(s):
                    ip = '.'.join([str(seg) forseg in segments])
                    res.append(ip)
                return
            if segStart == len(s):
                return
            if s[segStart] == '0':
                segments[segId] = 0
                dfs(segId + 1, segStart + 1)
            addr = 0
            for segEnd in range(segStart,len(s)):
                addr = addr * 10 + (ord(s[segEnd]) -ord('0'))
                if 0 < addr <= 255:
                    segments[segId] = addr  #这里不涉及pop,因为不是用栈来保存结果,这里新结果会覆盖旧结果
                    dfs(segId + 1, segEnd + 1)
                else:
                    return
        dfs(0, 0)
        return res
   

BM75 编辑距离(一)

class Solution:
    def editDistance(self , str1: str, str2:str) -> int:
        #dp[i][j]表示str1前i个字符与str2前j个字符的编辑距离
        m = len(str1)
        n = len(str2)
        dp = [[0] * (n + 1) for _ in range(m +1)]
        
        for i in range(m + 1):
            dp[i][0] = i
        for j in range(n + 1):
            dp[0][j] = j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                a = dp[i - 1][j] + 1 #在str1中插入一个字符到达dp[i][j]
                b = dp[i][j - 1] + 1 #在str2中插入一个字符到达dp[i][j]
                c = dp[i - 1][j - 1] #str[i] ==str[j]的情况下,不用操作,dp[i][j] =dp[i -1][j - 1]
                if str1[i - 1] != str2[j - 1]:
                    c += 1
                dp[i][j] = min(a, b, c)
        return dp[m][n]

BM76 正则表达式匹配

class Solution:
    def match(self , str: str, pattern: str)-> bool:
        m = len(str)
        n = len(pattern)
        dp = [[False] * (n + 1) for _ inrange(m + 1)]
        dp[0][0] = True
        
        def match(i, j):
            if i == 0:
                return False
            if pattern[j - 1] == '.':
                return True
            return str[i - 1] == pattern[j - 1]
        
        for i in range(m + 1):
            for j in range(1, n + 1):
                if pattern[j - 1] == '*':
                    dp[i][j] |= dp[i][j - 2]#pattern *前面的字符取0次
                    if match(i, j - 1): #str[i]与pattern[j - 1]匹配,*前面的字符可以取多次,相当于把str的最后一个字符一次次丢弃,并与pattern匹配
                        dp[i][j] |= dp[i -1][j] #在s[i] == p[i - 1]时,将s[i]扔掉, 检查s的1~i-1是否与p的1~j匹配
                        #虽然这里只看dp[i - 1][j] 但dp[i - 1][j] 也是由dp[i - 2][j]得来的
                else:
                    if match(i, j):
                        dp[i][j] |= dp[i - 1][j- 1]
        return dp[m][n]
 

BM77 最长的括号子串

class Solution:
    def longestValidParentheses(self, s: str)-> int:
        #dp[i] 表示以s[i]结尾的最长有效子串长度,注意不是前i个字符的最长有效子串长度
        n= len(s)
        if n == 0 or n == 1:
            return 0
        dp = [0] * n
        if s[0] == '(' and s[1] == ')':
            dp[1] = 2
        res = max(0, dp[1])
        for i in range(2, n):
            if s[i] == '(': #以'('结尾,必不是有效的子串
                dp[i] = 0
            elif s[i] == ')' and s[i - 1] =='(':
                dp[i] = dp[i - 2] + 2
            elif s[i] == ')' and s[i - 1] ==')':
                if i - dp[i - 1] - 1 >= 0and s[i - dp[i - 1] - 1] == '(':
                    dp[i] = dp[i - 1] + 2 +dp[i - dp[i - 1] - 2] #最后一项是因为s[i - dp[i -1] -1]前可能是(...)这样的有效括号,通过s[i - dp[i - 1] - 1]连起来了
            res = max(res, dp[i])
        return res
 

BM78 打家劫舍

方法一:动态规划

dp[i] 表示到第i间房屋可以偷得的最大金额,dp[i] = max()

i 可以选择偷或者不偷, 偷的话dp[i] = dp[i -2] + nums[i] , 不偷的话dp[i] = dp[i -1]

偷窃第 k间房屋,那么就不能偷窃第 k-1 间房屋,偷窃总金额为前 k-2间房屋的最高总金额与第 kk 间房屋的金额之和。

不偷窃第 k 间房屋,偷窃总金额为前 k-1 间房屋的最高总金额。

写法一:

class Solution:
    def rob(self , nums: List[int]) -> int:
        n = len(nums)
        if n == 1:
            return nums[0]
        dp = [0] * n
        dp[0] = nums[0]
        dp[1] = max(nums[0], nums[1])
        for i in range(2, n):
            dp[i] = max(dp[i - 2] + nums[i],dp[i - 1])
        return dp[n - 1]

空间优化:用两个变量滚动保存dp[i - 2] 和dp[i - 1]。因为这里dp[i] [j]只与dp[i - 1] 和dp[i - 2]有关系

class Solution:
    def rob(self , nums: List[int]) -> int:
        n = len(nums)
        if n == 1:
            return nums[0]
        a = nums[0]
        b = max(nums[0], nums[1])
        for i in range(2, n):
            a, b = b, max(a + nums[i], b)
        return b

写法二:dp[i]表示第i个,比对应的下标要多1

 
class Solution:
    def rob(self , nums: List[int]) -> int:
        n = len(nums)
        dp = [0] * (n + 1)
        dp[1] = nums[0]
        for i in range(2, n + 1):
            dp[i] = max(dp[i - 2] + nums[i-1],dp[i - 1]) #分别对应选和不选当前nums.如果选,则只能和dp[i-2]相加
            #如果上一次选了当前nums,下一次选在num的时候只能和dp[i-2]相加,也不相邻
        return dp[n]

BM79 打家劫舍(二)

情况1:偷第一家的钱,不偷最后一家的钱。初始状态与状态转移不变,只是遍历的时候数组最后一位不去遍历。

情况2:偷最后一家的请,不偷第一家的钱。初始状态改变,第一家就不要了,然后遍历的时候也会遍历到数组最后一位。

class Solution:
    def rob(self, nums: List[int]) -> int:
        n = len(nums)
        if n == 1:
            return nums[0]
        
        pre = nums[0]
        cur = max(pre, nums[1])
        if n == 2:
            return cur
        for i in range(2, n - 1):
            pre, cur = cur, max(pre + nums[i],cur)
        tmp = cur
 
        pre = nums[1]
        cur = max(pre, nums[2])
       for i in range(3, n):
            pre, cur = cur, max(pre + nums[i],cur)
        return max(tmp, cur)

BM80 买卖股票的最好时机

dp[i]表示第i天的利润,

dp[i] = max(dp[i -1], prices[i] - cost)

维护一个cost表示第i天之前的最低价格

class Solution:
    def maxProfit(self , prices: List[int])-> int:
        n = len(prices)
        res = 0
        cost = prices[0]
        for i in range(1, n):
            res = max(res, prices[i] - cost)
            cost = min(cost, prices[i])
        return res

BM81 买卖股票的最好时机(二)

方法二:贪心

class Solution:
    def maxProfit(self , prices: List[int])-> int:
        res = 0
        for i in range(1, len(prices)):
            if prices[i] > prices[i - 1]:
                res += prices[i] - prices[i -1]
        return res

BM82 买卖股票的最好时机(三)

dp[i] [0] 表示到第i天为止没有买卖过的最大收益

dp[i] [1] 表示到第i天为止买了一次的最大收益

dp[i] [2] 表示到第i天为止买一次,卖一次的最大收益

dp[i] [3] 表示到第i天为止买两次,卖一次的最大收益

dp[i] [4] 表示到第i天为止买两次,卖两次的最大收益

class Solution:
    def maxProfit(self , prices: List[int])-> int:
        n = len(prices)
        dp = [[float('-inf')] * 5 for _ inrange(n)]
        dp[0][0] = 0 #第一天不持有
        dp[0][1] = -prices[0] #第一天持有
        for i in range(1, n):
            dp[i][0] = dp[i - 1][0] #实际上都是0
            dp[i][1] = max(dp[i - 1][1], dp[i -1][0] - prices[i]) #分别对应之前买的和当天买的
            dp[i][2] = max(dp[i - 1][2], dp[i -1][1] + prices[i])
            dp[i][3] = max(dp[i - 1][3], dp[i -1][2] - prices[i])
            dp[i][4] = max(dp[i - 1][4], dp[i -1][3] + prices[i])
        return max(dp[n - 1][2], max(0, dp[n -1][4]))

08 字符串

BM83 字符串变形

对于一个长度为 n 字符串,我们需要对它做一些变形。

首先这个字符串中包含着一些空格,就像"Hello World"一样,然后我们要做的是把这个字符串中由空格隔开的单词反序,同时反转每个字符的大小写。

比如"Hello World"变形后就变成了"wORLD hELLO"。

方法一:str.split()函数

class Solution:
    def trans(self , s: str, n: int) -> str:
        lst = s.split(' ') #就算遇到多空格,用一个空格分割是没问题的,下面再用一个空格拼接;但如果用s.split(''),空格最后都变成单空格了
        lst.reverse() #在原来的地址上修改,不能写lst = lst.reverse()
        s = ' '.join(lst)
        return s.swapcase() #直接大小写交换

BM84 最长公共前缀

class Solution:
    def longestCommonPrefix(self , strs:List[str]) -> str:
        if not strs:
            return ''
        for i in range(len(strs[0])):
            for s in strs[1:]:
                if i => len(s) or s[i] !=strs[0][i]:
                    return strs[0][:i]
        return strs[0]

BM85 验证IP地址

class Solution:
    def solve(self , IP: str) -> str:
        numsv4 = IP.split('.')
        numsv6 = IP.split(':')
        res = ''
        if len(numsv4) == 4:
            for num in numsv4:
                for c in num:
                    if not '0' <= c <='9':
                        res = 'Neither'
                        break
                if res == 'Neither':
                    break
                if not num or (num[0] == '0'and len(num) > 1) or int(num) > 255:
                    res = 'Neither'
                    break
            if res != 'Neither':
                res = 'IPv4'
        if res == 'IPv4':
            return res
        res1 = ''
        if len(numsv6) == 8:
            for num in numsv6:
                if len(num) <= 0 or len(num)>= 5:
                    res1 = 'Neither'
                    break
                for c in num:
                    if '0' <= c <= '8' or'a' <= c <= 'f' or 'A' <= c <= 'F':
                        continue
                    else:
                        res1 = 'Neither'
                        break
            if res1 != 'Neither':
                res1 = 'IPv6'
        return res1 if res1 == 'IPv6' else'Neither'
 

BM86 大数加法

写法二:res = [ ],后面再join(res)

该写法并没有提高空间效率

写法一:时间70%,空间12%

写法二:时间1%,空间6%

class Solution:
    def solve(self , s: str, t: str) -> str:
        s = [int(c) for c in s]
        t = [int(c) for c in t]
        res = []
        digi = 1
        carry = 0
        while s or t:
            if s and t:
                SUM = s.pop() + t.pop() + carry
                carry = SUM // 10
                s1 = SUM % 10
                res.insert(0, str(s1))
            elif s:
                SUM = s.pop() + carry
                carry = SUM // 10
                s1 = SUM % 10
                res.insert(0, str(s1))
            else:
                SUM = t.pop() + carry
                carry = SUM // 10
                s1 = SUM % 10
                res.insert(0, str(s1))
        if carry != 0:
            res.insert(0, str(carry))
        return ''.join(res)
 

09 双指针

BM87 合并两个有序的数组

class Solution:
    def merge(self , A, m, B, n):
        i = m - 1
        j = n - 1
        p = m + n - 1
        while i >= 0 and j >= 0:
            if A[i] > B[j]:
                A[p] = A[i]
                i -= 1
            else:
                A[p] = B[j]
                j -= 1
            p -= 1
        while j >= 0:
            A[p] = B[j]
            j -= 1
            p -= 1

BM88 判断是否为回文子串

class Solution:
    def judge(self , str: str) -> bool:
        # write code here
        i, j = 0, len(str) - 1
        while i < j:
            if str[i] != str[j]:
                return False
            i += 1
            j -= 1

BM89 合并区间

把两个区间合并,覆盖原来两个区间的范围。

# class Interval:
#     def __init__(self, a=0, b=0):
#         self.start = a
#         self.end = b
class Solution:
    def merge(self , intervals: List[Interval])-> List[Interval]:
        if not intervals:
            return []
        intervals.sort(key = lambda x: x.start)
        res = []
        pre = intervals[0]
        for cur in intervals[1:]:
            if pre.end < cur.start:
                res.append(pre)
                pre = cur
            elif cur.start <= pre.end 

BM90 最小覆盖字串

方法一:哈希 + 滑动窗口

哈希记录T中的每字符串还缺几个

i, j 分别指向滑动窗口的左右端点。

j 向右扩张,如果窗口满足包含T的条件,则i向右收缩,同时记录最短字串和对应的端点

class Solution:
    def minWindow(self , S: str, T: str) ->str:
        dic = {}
        for c in T:
            if c in dic:
                dic[c] -= 1 #表示还缺几个字符
            else:
                dic[c] = -1 
        
        def check(dic):
            for k, val in dic.items():
                if val < 0: #当还缺字符,则不满足
                    return False
            return True
        
        L = len(S) + 1
        i = 0
        j = 0
        left = -1 #用来记录最短区间的左右端点,因为最后要返回字符串而不是最小长度
        right = -1
        while j < len(S):
            if S[j] in dic: #找到一个则加1
                dic[S[j]] += 1 
            while check(dic): #窗口的字符串满足要求
                if j - i + 1 < L:
                    L = j - i + 1
                    left = i
                    right = j
                if S[i] in dic: #当前收缩的子符是否在T中
                    dic[S[i]] -= 1 #如果在T中,则减1
                i += 1 #左边界收缩
            j += 1
        if left == -1: #找不到,
            return ''
        return S[left : right + 1]

BM91 反转字符串

class Solution:
    def solve(self , str: str) -> str:
        i = len(str) - 1
        res = []
        while i >= 0:
            res.append(str[i])
            i -= 1
        return ''.join(res)

BM92 最长无重复子数组

方法一:哈希,记录每个数字的最右边的位置

写法二:

class Solution:
    def lengthOfLongestSubstring(self, s: str)-> int:
        dic = {}
        res = tmp = 0
        for j in range(len(s)):
            i = dic.get(s[j],-1) #dic.get获取键s[j]的值,若不存在则返回第二参数-1
            dic[s[j]] = j
            tmp = tmp + 1 if j - i > tmpelse j - i
            res = max(tmp, res)
        return res
 

BM93 盛最多水的容器

关键是容积由最小的高度决定

class Solution:
    def maxArea(self , height: List[int]) ->int:
        n = len(height)
        if n < 2:
            return 0
        i, j = 0, n - 1
        res = min(height[i], height[j]) * (j -i)
        while i < j:
            if height[i] < height[j]:
                i += 1
            else:
                j -= 1
            res = max(res, min(height[i],height[j]) * (j - i))
        return res

BM94 接雨水问题

方法一:双指针

指针指向两边向中间靠,

且维护左右的最大边界的高度,当指针指向的高度比边界高度低时,对应的雨水单位就是边界减当前高度

class Solution:
    def maxWater(self , arr: List[int]) ->int:
        i, j = 0, len(arr) - 1
        maxL = 0
        maxR = 0
        res = 0
        while i < j:
            maxL = max(maxL, arr[i])
            maxR = max(maxR, arr[j])
            if arr[i] < arr[j]:
                res += maxL - arr[i]
                i += 1
            else:
                res += maxR - arr[j]
                j -= 1
        return res 

10 贪心算法

BM95 分糖果问题

方法一:两次遍历

从左到右,当前比左边大时,当前的糖果为左边加1

从右到左,当前比右边大,但糖果数比右边小时,当前的糖果为右边加1

class Solution:
    def candy(self , arr: List[int]) -> int:
        n = len(arr)
        nums = [1] * n
        for i in range(1, n):
            if arr[i] > arr[i - 1]:
                nums[i] = nums[i - 1] + 1
        res = nums[n - 1]
        i = n - 2
        while i >= 0:
            if arr[i] > arr[i + 1] andnums[i] <= nums[i + 1]: #当左边比右边大,但分到的糖果小于或等于右边
                nums[i] = nums[i + 1] + 1
            res += nums[i]
            i -= 1
        return res

BM96 主持人调度(二)

方法一:排序+遍历比较

class Solution:
    def minmumNumberOfHost(self , n: int,startEnd: List[List[int]]) -> int:
        start = []
        end = []
        for i in range(n):
            start.append(startEnd[i][0])
            end.append(startEnd[i][1])
        start.sort()
        end.sort()
        res = 0
        j = 0
        for i in range(n):
            if start[i] >= end[j]: #新开始的节目的开始时间大于上一轮快要结束的结束时间,主持人不变
                j += 1  #最快要结束的时间变为下一个
            else:
                res += 1 #增加主持,最快要结束的时间还是原来的j,不变
        return res
 

11模拟

BM97 旋转数组

方法一:切片

class Solution:
    def solve(self , n: int, m: int, a:List[int]) -> List[int]:
        m = m % n
        res = a[n - m :] + a[:n - m]
        return res

BM98 螺旋矩阵

class Solution:
    def spiralOrder(self , matrix:List[List[int]]) -> List[int]:
        if not matrix:
            return []
        l, r, u, d = 0, len(matrix[0]) - 1, 0,len(matrix) - 1
        res = []
        while l <= r and u <= d:  #等于的时候是要进入循环的,比如[[2, 3]],u == d == 0. 一旦l > r 或者u > d就跳出
            for j in range(l, r + 1):
                res.append(matrix[u][j])
            u += 1
            if u > d: #但不满足时就要跳出,否者下面会重复打印。比如matrix= [[2, 3]]时,若不跳出,
                break
            for i in range(u, d + 1):
                res.append(matrix[i][r])
            r -= 1
            if l > r:
                break
            for j in range(r, l - 1, -1): #这里会重复打印
                res.append(matrix[d][j])
            d -= 1
            if u > d:
                break
            for i in range(d, u - 1, -1):
                res.append(matrix[i][l])
            l += 1
            if l > r:
                break
        return res
 

BM99 顺时针旋转矩阵

方法一:利用辅助矩阵

设原矩阵的元素坐标为i, j,那么在结果中该元素的坐标为 j, n - i - 1

即原来在第几列,则在新数组中第几行。原来在第几行,则在新数组中的倒数第几列

class Solution:
    def rotateMatrix(self , mat:List[List[int]], n: int) -> List[List[int]]:
        mat_tmp = [[0] * n for _ in range(n)]
        for i in range(n):
            for j in range(n):
                mat_tmp[j][n - i - 1] =mat[i][j]
        return mat_tmp

BM100 设计LRU缓存

双向链表+哈希

class DlinkedNode:
    def __init__(self, key = 0, value = 0):
        self.key = key
        self.value = value
        self.next = None
        self.prev = None

class LRUCache:
    def__init__(self, capacity: int):
        self.cache = {}
        self.head = DlinkedNode()
        self.tail = DlinkedNode()
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.size = 0

    def get(self, key: int) -> int: 
        if not key in self.cache:
            return -1
        node = self.cache[key]
        self.removeNode(node)
        self.addToHead(node)
        return node.value

    def put(self, key: int, value: int) ->None:
        if key in self.cache:
            node = self.cache[key]
            self.removeNode(node)
            self.addToHead(node)
            node.value = value
        else:
            node = DlinkedNode(key, value)
            self.cache[key] = node
            self.addToHead(node)
            self.size += 1
            if self.size > self.capacity:
                removed = self.removeTail()
                self.cache.pop(removed.key)
                self.size -= 1
    def addToHead(self, node):
        node.next = self.head.next
        node.prev = self.head
        self.head.next = node
        node.next.prev = node
    def removeNode(self, node):
        node.prev.next = node.next
        node.next.prev = node.prev
    def removeTail(self,):
        node = self.tail.prev
        # node.prev.next = self.tail
        # self.tail.prev = node.prev
        self.removeNode(node)
        return node

BM101 设计LFU 缓存

用两个哈希:

记录key和节点

记录频率和双向链表

# importcollections
class Node:
    def __init__(self, key, value):
        self.freq = 0
        self.key = key
        self.value = value
        self.pre = None
        self.next = None
 
class LFUCache:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.size = 0
        self.minFreq = 0
        self.freqMap =collections.defaultdict(self.create_linked_list) 
        #使用某个键时,该键不存在,则生成该键,值为self.create_linked_list()
       self.keyMap = {} #保存的值是双向链表的头和尾,注意喂进去的函数参数没有括号
    def create_linked_list(self):
        head = Node(0, 0)
        tail = Node(0, 0)
        head.next = tail
        tail.pre = head
        return (head, tail) #元组类似于列表,区别是元组不能修改
    def insert(self, node1, node2): #将node2插入到node1后面
        node2.pre = node1
        node2.next = node1.next
        node1.next.pre = node2
        node1.next = node2
    def delete(self, node):
        if node.pre:
            node.pre.next = node.next
            node.next.pre = node.pre
            if node.pre is self.freqMap[node.freq][0]and node.next is self.freqMap[node.freq][1]: #如果node是最后一个元素
                self.freqMap.pop(node.freq)
        return node.key
    def increase(self, node): #插入到下一个频率对应的双链表
        node.freq += 1
        self.delete(node)
       self.insert(self.freqMap[node.freq][-1].pre, node) #插入到尾部,尾部是最新的
        if node.freq == 1:
            self.minFreq = 1
        elif self.minFreq == node.freq - 1: #如果当前处理的node是之前频率最小的,则查看node.freq - 1还有没有节点,如果没有则node.freq就是最小
            head, tail = self.freqMap[node.freq- 1]
            if head.next is tail:
                self.minFreq = node.freq
    def get(self, key: int) -> int:
        if key in self.keyMap:
            self.increase(self.keyMap[key])
            return self.keyMap[key].value
        return -1
    def put(self, key: int, value: int) ->None:
        if self.capacity == 0:
            return
        if key in self.keyMap:
            node = self.keyMap[key]
            node.value = value
        else:
            node = Node(key, value)
            self.keyMap[key] = node
            self.size += 1
        if self.size > self.capacity:
            self.size -= 1
            deleted =self.delete(self.freqMap[self.minFreq][0].next) #删除频率最小的头部缓存
            self.keyMap.pop(deleted)
        self.increase(node)

你可能感兴趣的:(算法与数据结构,数据结构,算法题库)