16 Pandas怎样实现groupby分组统计

16 Pandas怎样实现groupby分组统计

类似SQL:
select city,max(temperature) from city_weather group by city;

groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数

本次演示:
一、分组使用聚合函数做数据统计
二、遍历groupby的结果理解执行流程 三、实例分组探索天气数据

  
  
  
  
import pandas as pd import numpy as np # 加上这一句,能在jupyter notebook展示matplot图表 %matplotlib inline df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) df
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
A B C D
0 foo one 0.542903 0.788896
1 bar one -0.375789 -0.345869
2 foo two -0.903407 0.428031
3 bar three -1.564748 0.081163
4 foo two -1.093602 0.837348
5 bar two -0.202403 0.701301
6 foo one -0.665189 -1.505290
7 foo three -0.498339 0.534438

一、分组使用聚合函数做数据统计

1、单个列groupby,查询所有数据列的统计

  
  
  
  
df.groupby('A').sum()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
C D
A
bar -2.142940 0.436595
foo -2.617633 1.083423

我们看到:

  1. groupby中的’A’变成了数据的索引列
  2. 因为要统计sum,但B列不是数字,所以被自动忽略掉

2、多个列groupby,查询所有数据列的统计

  
  
  
  
df.groupby(['A','B']).mean()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
C D
A B
bar one -0.375789 -0.345869
three -1.564748 0.081163
two -0.202403 0.701301
foo one -0.061143 -0.358197
three -0.498339 0.534438
two -0.998504 0.632690

我们看到:(‘A’,‘B’)成对变成了二级索引

  
  
  
  
df.groupby(['A','B'], as_index=False).mean()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
A B C D
0 bar one -0.375789 -0.345869
1 bar three -1.564748 0.081163
2 bar two -0.202403 0.701301
3 foo one -0.061143 -0.358197
4 foo three -0.498339 0.534438
5 foo two -0.998504 0.632690

3、同时查看多种数据统计

  
  
  
  
df.groupby('A').agg([np.sum, np.mean, np.std])
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead tr th { text-align: left; } .dataframe thead tr:last-of-type th { text-align: right; } 
C D
sum mean std sum mean std
A
bar -2.142940 -0.714313 0.741583 0.436595 0.145532 0.526544
foo -2.617633 -0.523527 0.637822 1.083423 0.216685 0.977686

我们看到:列变成了多级索引

4、查看单列的结果数据统计

  
  
  
  
# 方法1:预过滤,性能更好 df.groupby('A')['C'].agg([np.sum, np.mean, np.std])
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sum mean std
A
bar -2.142940 -0.714313 0.741583
foo -2.617633 -0.523527 0.637822
  
  
  
  
# 方法2 df.groupby('A').agg([np.sum, np.mean, np.std])['C']
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
sum mean std
A
bar -2.142940 -0.714313 0.741583
foo -2.617633 -0.523527 0.637822

5、不同列使用不同的聚合函数

  
  
  
  
df.groupby('A').agg({"C":np.sum, "D":np.mean})
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
C D
A
bar -2.142940 0.145532
foo -2.617633 0.216685

二、遍历groupby的结果理解执行流程

for循环可以直接遍历每个group

1、遍历单个列聚合的分组
  
  
  
  
g = df.groupby('A') g 0x00000123B250E548> for name,group in g: print(name) print(group) print() bar A B C D 1 bar one -0.375789 -0.345869 3 bar three -1.564748 0.081163 5 bar two -0.202403 0.701301 foo A B C D 0 foo one 0.542903 0.788896 2 foo two -0.903407 0.428031 4 foo two -1.093602 0.837348 6 foo one -0.665189 -1.505290 7 foo three -0.498339 0.534438

可以获取单个分组的数据

  
  
  
  
g.get_group('bar')
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
A B C D
1 bar one -0.375789 -0.345869
3 bar three -1.564748 0.081163
5 bar two -0.202403 0.701301
2、遍历多个列聚合的分组
  
  
  
  
g = df.groupby(['A', 'B']) for name,group in g: print(name) print(group) print() ('bar', 'one') A B C D 1 bar one -0.375789 -0.345869 ('bar', 'three') A B C D 3 bar three -1.564748 0.081163 ('bar', 'two') A B C D 5 bar two -0.202403 0.701301 ('foo', 'one') A B C D 0 foo one 0.542903 0.788896 6 foo one -0.665189 -1.505290 ('foo', 'three') A B C D 7 foo three -0.498339 0.534438 ('foo', 'two') A B C D 2 foo two -0.903407 0.428031 4 foo two -1.093602 0.837348

可以看到,name是一个2个元素的tuple,代表不同的列

  
  
  
  
g.get_group(('foo', 'one'))
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
A B C D
0 foo one 0.542903 0.788896
6 foo one -0.665189 -1.505290

可以直接查询group后的某几列,生成Series或者子DataFrame

  
  
  
  
g['C'] 0x00000123C33F64C8> for name, group in g['C']: print(name) print(group) print(type(group)) print() ('bar', 'one') 1 -0.375789 Name: C, dtype: float64 <class 'pandas.core.series.Series'> ('bar', 'three') 3 -1.564748 Name: C, dtype: float64 <class 'pandas.core.series.Series'> ('bar', 'two') 5 -0.202403 Name: C, dtype: float64 <class 'pandas.core.series.Series'> ('foo', 'one') 0 0.542903 6 -0.665189 Name: C, dtype: float64 <class 'pandas.core.series.Series'> ('foo', 'three') 7 -0.498339 Name: C, dtype: float64 <class 'pandas.core.series.Series'> ('foo', 'two') 2 -0.903407 4 -1.093602 Name: C, dtype: float64 <class 'pandas.core.series.Series'>

其实所有的聚合统计,都是在dataframe和series上进行的;

三、实例分组探索天气数据

  
  
  
  
fpath = "./datas/beijing_tianqi/beijing_tianqi_2018.csv" df = pd.read_csv(fpath) # 替换掉温度的后缀℃ df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype('int32') df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype('int32') df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 2
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 1
2 2018-01-03 2 -5 多云 北风 1-2级 28 1
3 2018-01-04 0 -8 东北风 1-2级 28 1
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 1
  
  
  
  
# 新增一列为月份 df['month'] = df['ymd'].str[:7] df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel month
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 2 2018-01
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 1 2018-01
2 2018-01-03 2 -5 多云 北风 1-2级 28 1 2018-01
3 2018-01-04 0 -8 东北风 1-2级 28 1 2018-01
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 1 2018-01

1、查看每个月的最高温度

  
  
  
  
data = df.groupby('month')['bWendu'].max() data month 2018-01 7 2018-02 12 2018-03 27 2018-04 30 2018-05 35 2018-06 38 2018-07 37 2018-08 36 2018-09 31 2018-10 25 2018-11 18 2018-12 10 Name: bWendu, dtype: int32 type(data) pandas.core.series.Series data.plot()

2、查看每个月的最高温度、最低温度、平均空气质量指数

  
  
  
  
df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel month
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 2 2018-01
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 1 2018-01
2 2018-01-03 2 -5 多云 北风 1-2级 28 1 2018-01
3 2018-01-04 0 -8 东北风 1-2级 28 1 2018-01
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 1 2018-01
  
  
  
  
group_data = df.groupby('month').agg({"bWendu":np.max, "yWendu":np.min, "aqi":np.mean}) group_data
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
bWendu yWendu aqi
month
2018-01 7 -12 60.677419
2018-02 12 -10 78.857143
2018-03 27 -4 130.322581
2018-04 30 1 102.866667
2018-05 35 10 99.064516
2018-06 38 17 82.300000
2018-07 37 22 72.677419
2018-08 36 20 59.516129
2018-09 31 11 50.433333
2018-10 25 1 67.096774
2018-11 18 -4 105.100000
2018-12 10 -12 77.354839
  
  
  
  
group_data.plot() 0x123c5502d48>

本文使用 文章同步助手 同步

你可能感兴趣的:(16 Pandas怎样实现groupby分组统计)