- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- Docker-pull 目前最快的docker下载工具
qq251708339
docker容器运维
Docker下载工具近期docker下载镜像很不稳定,时不时出现下载不了的情况,这几天更是出现完全无法下载不了的情况项目里刚好用到docker,索性花了点时间用golang开发了一个小工具,不出意外,全网最快的docker下载工具,兼容arm架构,nas用户也可以玩,支持windows、linux,也支持在docker套娃(容器里更新镜像)源码https://github.com/lianshuf
- 华为鸿蒙实现重大突破,超4000个应用程式加入
ggtdfgfdg
华为harmonyos
华为开发者学堂自从华为Mate60系列携自研麒麟9000S5G处理器强势回归后,美西方就已经陷入了深深的自我怀疑,拜登对华为的重拳打压,难道都是“摆设”吗?芯片没有被阻拦,就连操作系统也迎来了重大突破,美国最不愿意看到的事情还是发生了!近日,华为鸿蒙传来重磅消息,在华为开启“原生鸿蒙应用”计划之后,短短2个月的时间,鸿蒙系统的应用程序就已经超过了4000个,激增20倍之多。除了主流的应用程序之外,
- 亚马逊测评日记: 亚马逊自养号是什么意思?测评的风险?review和feedback、rating星级评分的区别?
候鸟浏览器
很多刚进入跨境电商行业的朋友对亚马逊平台的一些基础知识还不是很了解,比如今天就有个朋友问小编亚马逊Review是什么意思。我一脸蒙,如果做亚马逊卖家店铺连Review都不知道的话肯定店铺运营的也不是太好。对于任何跨境电商平台Review都是非常重要的,关系着整个店铺的权重和产品搜索排名。今天这篇文章主要是给刚入行的亚马逊卖家和自养号测评服务商进行一些知识普及,如果您是老卖家觉得很内容很小白可以不用
- 深入浅出 K 近邻算法:原理、实践与应用
烂蜻蜓
机器学习近邻算法算法
引言在机器学习的众多算法中,K近邻算法(K-NearestNeighbors,简称KNN)以其简洁而强大的特性占据着重要地位。它既可以用于分类任务,也能在回归任务中发挥作用。无论是处理简单数据集,还是面对复杂的数据分布,KNN都展现出独特的魅力。本文将深入探讨KNN算法的原理、特点、优缺点、实现步骤以及在分类和回归任务中的具体应用。KNN算法的基本原理KNN算法属于监督学习范畴,其核心思想质朴而直
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- 《计量地理学》实习指南
zmg18213828575
一、EXCEL中常用的函数(部分)操作方法:打开EXCEL→输入原始数据→选择fx粘贴函数→函数分类中选择统计→从函数名中选择我们所需要的函数→确定→在数值中输入或选入计算数据范围(如A1:A10)则结果就会出来。具体的函数及其含义:AVERAGE计算参数平均值CORREL求相关系数DEVSQ求离差平方和FTESTF检验的结果GEOMEAN正数数组的几何平均数INTERCEPT一元回归线的载距(Y
- 单元测试方法及其运用
一休哥助手
软考系统架构师单元测试
引言随着软件规模和复杂度的不断提升,开发人员面临着如何保证软件质量与稳定性的挑战。单元测试作为软件测试中不可或缺的一环,能够在早期发现代码中的问题,从而提高软件的可靠性。本文将结合我参与的一个软件项目,详细介绍单元测试中的静态测试与动态测试方法,以及如何确定白盒测试的覆盖标准和组织实施回归测试。1.项目背景及个人角色在我参与的一个在线教育平台开发项目中,团队的目标是构建一个高度可扩展的课程管理和学
- 2025毕设springboot大学目标规划与落地平台的设计与实现后台源码+论文
皓宇学长-毕设
课程设计springboot后端
系统程序文件列表开题报告内容研究背景在当今社会,随着高等教育的普及和竞争的日益激烈,大学生对于个人成长与职业规划的需求愈发迫切。然而,许多学生在追求学业进步、技能提升及未来职业发展等方面缺乏有效的目标规划与跟踪工具。传统的目标管理方式往往依赖于纸质日记或简单的电子记录,难以提供系统化、个性化的目标设定与进度监控服务。因此,开发一款集目标规划、执行跟踪、反馈激励于一体的大学目标规划与落地平台显得尤为
- Math.NET Numerics 库怎么装
9677
.net
你提到的缺少的库是Math.NETNumerics。关于Math.NETNumericsMath.NETNumerics是一个用于.NET平台的开源数学库,提供了以下功能:线性代数(矩阵运算、求解线性方程组等)。数值计算(积分、微分、优化等)。统计和概率分布。回归分析(包括多元线性回归)。它是C#中进行科学计算和数据分析的常用工具。安装Math.NETNumerics你可以通过NuGet包管理器安
- AI概率学预测足球大小球让球数据分析
sanx18
人工智能数据分析数据挖掘
在足球数据分析中,AI概率学预测主要涉及大小球和让球盘口的分析。以下是关键点:1.大小球分析大小球指机构设定的进球数预期,投注者预测实际进球数是否超过或低于该值。AI应用:历史数据:AI通过分析球队的历史进球、失球等数据,预测未来比赛进球数。机器学习:使用回归模型、神经网络等预测进球数,考虑球队实力、比赛风格、天气等因素。实时数据:结合实时比赛数据动态调整预测。2.让球分析让球是机构为平衡双方实力
- 订单日记为“容易设计”提供全方位的进销存管理支持
雪兽软件
ERP系统进销存软件订单日记
感谢容易(苏州)文化创意设计有限公司选择使用订单日记!容易(苏州)文化创意设计有限公司,成立于2006年,位于江苏省苏州吴中经济开发区,是一家以从事销售时尚女包、旅行便携包、礼品包等产品为主的企业。在业务不断壮大的过程中,想使用一种既能提升运营效率又能节省成本的系统管理工具,在市场上多方比较和考察后最终选择了订单日记。订单日记是轻量级高效的进销存管理工具,它的管理模块很多,对容易(苏州)文化创意设
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- 基于线性回归和多项式回归的完整代码
yzx991013
回归线性回归算法
1.导入必要库importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLinearRegressionfromsklearn.preprocessingimportPolynomialFeaturesfromsklearn.pipelineimportPipelinefromsklearn.metricsi
- java日记1(小白常见的错误)
xxxlllli
java
一.找不到文件出现这种情况的话1.检查自己文件名是否输入正确2.检查文件所在目录是否正确二.主类名和文件名不一致例如该文件名是lianxi而主类名为lianxi01,应把两者统一三.缺少分号根据提示添加分号即可(分号要英文模式下的!!!)
- java小白日记35(BigInteger和BigDecimal类)
xxxlllli
java开发语言
应用场景介绍:(1)BigInteger适合保存比较大的整型(2)BigDecimal适合保存精度更高的浮点型(小数)BigInteger的使用importjava.math.BigInteger;publicclassBigIntegerExample{publicstaticvoidmain(String[]args){//创建两个BigInteger对象BigIntegernum1=newB
- 那些让人瞳孔地震的代码艺术:程序员の精神污染实录
苏小简
编程黑魔法代码笑话开发者迷惑行为
一、█▓颠覆认知の空间折叠术▓█①禁止套娃の俄罗斯轮盘赌#薛定谔的递归:每次运行都可能崩溃或成功importrandomdefroulette(n):ifrandom.randint(0,10)>n:returnroulette(n+1)#程序员の赌徒谬误print("幸存!"ifn{console.log(现在);//输出:穿越前的旧时间let现在=Date.now();},1000);魔幻现实
- 暑假算法刷题日记 Day 6
mjh_yylx
算法刷题打卡算法
今天继续刷完二分查找,还有最后五个题二分查找就结束啦!023、P3743小鸟的设备题目背景小鸟有nnn个可同时使用的设备。题目描述第iii个设备每秒消耗aia_iai个单位能量。能量的使用是连续的,也就是说能量不是某时刻突然消耗的,而是匀速消耗。也就是说,对于任意实数,在kkk秒内消耗的能量均为k×aik\timesa_ik×ai单位。在开始的时候第iii个设备里存储着bib_ibi个单位能量。同
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 上班族必看!27个副业路子,总有一个适合你!
nn_sns0278_cn
考研经验分享生活网络
你是不是也在为每个月的工资发愁?是不是也想找点副业来增加收入?现在很多上班族的工资已经难以满足生活需求了,不少人开始尝试通过副业来增加收入。那么,上班族该如何找到适合自己的副业呢?今天,我给大家整理了27个适合上班族的副业赚钱路子,或许能给你带来一些灵感!1.亲子教育分享:宝妈也能赚钱如果你是一位宝妈,可以分享亲子教育的知识,吸引更多宝妈粉丝。你可以分享日常带娃的经验,或者为母婴产品带货,打造个人
- 数据挖掘导论Pangaea-Ning Tan 读书笔记——(第一,二,三章)
小黄人的黄
数据挖掘数据挖掘
《数据挖掘导论》Pang-NingTan,MichaelSteinbach,VipinKumar读书笔记,第一章绪论数据挖掘任务预测任务描述任务分类任务回归任务聚类分析关联分析异常检测章节导读数据挖掘数据处理第2章第3章分类第4章决策树过拟合性能评估等第5章
- 机器学习模型-从线性回归到神经网络
Earth explosion
机器学习线性回归神经网络
在当今的数据驱动世界中,机器学习模型是许多应用程序的核心。无论是推荐系统、图像识别,还是自动驾驶汽车,机器学习技术都在背后发挥着重要作用。在这篇文章中,我们将探索几种基础的机器学习模型,并了解它们的基本原理和应用场景。1.线性回归基本原理线性回归是最简单的机器学习模型之一。它旨在找到一个最佳拟合线来预测目标变量(通常是连续值)。线性回归假设输入变量和输出变量之间存在线性关系,其数学表达式为:[y=
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- git stash pop后 想找到stash 发现被删除(git坑日记)
hzxOnlineOk
gitgit
git虽然会将我们stashpop后的stash记录移除引用,但是并不会删除,他存放在一些文件里,下面执行以下语句即可查找对应的commitId对应的修改:PS:注意,这里的commitId就是指的stash的Id,里边有我们stash后的文件修改记录,往下滚动即可逐个文件查找gitfsck会出现一堆的ID,找到commit对应的commitId,注意,这边可能是不按顺序的,需要从上到下逐个尝试
- 深度学习复习笔记(6)线性回归——新冠预测项目
Kriol
深度学习初学深度学习笔记线性回归
importmatplotlib.pyplotaspltimporttorch#框架importnumpyasnp#矩阵处理importcsv#读excel文件fromtorch.utils.dataimportDataLoader,Dataset#两个与数据处理相关的包,类Datasetimporttorch.nnasnn#类nn.Module需要用,损失函数需要用fromtorchimport
- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f