转录组分析(11) - GO/KEGG富集分析(1)

简介

bioconductor介绍
Github介绍
clusterProfiler-book

分析
模式生物

clusterProfiler提供20种模式物种的GO与KEGG功能富集与注释,可直接下载使用。

Package Maintainer Title 物种 Index
org.Hs.eg.db Bioconductor Package Maintainer Genome wide annotation for Human 3
org.Mm.eg.db Bioconductor Package Maintainer Genome wide annotation for Mouse 小鼠 5
org.Rn.eg.db Bioconductor Package Maintainer Genome wide annotation for Rat 大鼠 19
org.Sc.sgd.db Bioconductor Package Maintainer Genome wide annotation for Yeast 酵母 28
org.Dm.eg.db Bioconductor Package Maintainer Genome wide annotation for Fly 苍蝇 31
org.At.tair.db Bioconductor Package Maintainer Genome wide annotation for Arabidopsis 拟南芥 32
org.Dr.eg.db Bioconductor Package Maintainer Genome wide annotation for Zebrafish 斑马鱼 37
org.Ce.eg.db Bioconductor Package Maintainer Genome wide annotation for Worm 蠕虫 44
org.Bt.eg.db Bioconductor Package Maintainer Genome wide annotation for Bovine 53
org.Gg.eg.db Bioconductor Package Maintainer Genome wide annotation for Chicken 56
org.Cf.eg.db Bioconductor Package Maintainer Genome wide annotation for Canine 61
org.Ss.eg.db Bioconductor Package Maintainer Genome wide annotation for Pig 64
org.Mmu.eg.db Bioconductor Package Maintainer Genome wide annotation for Rhesus 恒河猴 70
org.EcK12.eg.db Bioconductor Package Maintainer Genome wide annotation for E coli strain K12 大肠杆菌菌株K12 76
org.Xl.eg.db Bioconductor Package Maintainer Genome wide annotation for Xenopus 非洲爪蟾 111
org.Ag.eg.db Bioconductor Package Maintainer Genome wide annotation for Anopheles 按蚊 114
org.Pt.eg.db Bioconductor Package Maintainer Genome wide annotation for Chimp 黑猩猩 121
org.Pf.plasmo.db Bioconductor Package Maintainer Genome wide annotation for Malaria 疟原虫 132
org.EcSakai.eg.db Bioconductor Package Maintainer Genome wide annotation for E coli strain Sakai 大肠杆菌菌株Sakai 137
org.Mxanthus.db Eduardo Illueca Fernández Genome wide annotation for Myxococcus xanthus DK 1622 黄色粘球菌DK1622 944

安装及加载

if (!requireNamespace("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install("org.Hs.eg.db")
library("org.Hs.eg.db")

非模式生物分为两种,一种是可以在AnnotationHub上在线抓取Org.Db的非模式生物;如果在AnnotationHub上没有抓取到Org.Db,则可以采取自己构建的方式。

非模式生物(一)

AnnotationHub

if (!requireNamespace("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install("AnnotationHub")
BiocManager::install("clusterProfiler")

library("AnnotationHub")
hub <- AnnotationHub::AnnotationHub()
query(hub,"Rosa chinensis")
Rosa_chinensis <- hub[['AH85494']]

length(keys(Rosa_chinensis))
columns(Rosa_chinensis)

library("clusterProfiler")
# #example
# gene <- as.character(data$V1)
# gene_trans <- mapIds(x = Rosa_chinensis,keys = gene,keytype = "SYMBOL",column = "ENTREZID")
# na.omit(data_id)
# erich.go.BP <- enrichGO(gene=data,OrgDb = Rosa_chinensis,keyType = "SYMBOL",ont = "BP",pvalueCutoff = 0.01,qvalueCutoff = 0.05,readable = T)
非模式生物(二)

利用EggNOG构建

getwd()
setwd("E:/script/R/eggNOG前置文件")

rm(list = ls())
library(tidyr)
library(stringr)
library(dplyr)

#######STEP1 读入文件
egg_f <- "diamond.emapper.annotations"
egg <- read.csv(egg_f, sep = "\t")
egg[egg==""]<-NA #这个代码来自花花的指导(将空行变成NA,方便下面的去除) 

#######STEP2 从文件中挑出基因query_name与eggnog注释信息
gene_info <- egg %>%
  dplyr::select(GID = query_name, GENENAME = `eggNOG.free.text.desc.`) %>% na.omit()

#######STEP3-1  挑出query_name与GO注释信息
gterms <- egg %>%
  dplyr::select(query_name, GOs) %>% na.omit()

#######STEP3-2  我们想得到query_name与GO号的对应信息
# 先构建一个空的数据框(弄好大体的架构,表示其中要有GID =》query_name,GO =》GO号, EVIDENCE =》默认IDA)
# 关于IEA:就是一个标准,除了这个标准以外还有许多。IEA就是表示我们的注释是自动注释,无需人工检查http://wiki.geneontology.org/index.php/Inferred_from_Electronic_Annotation_(IEA)
# 两种情况下需要用IEA:1. manually constructed mappings between external classification systems and GO terms;2.automatic transfer of annotation to orthologous gene products.
gene2go <- data.frame(GID = character(),
                      GO = character(),
                      EVIDENCE = character())

# 然后向其中填充:注意到有的query_name对应多个GO,因此我们以GO号为标准,每一行只能有一个GO号,但query_name和Evidence可以重复
for (row in 1:nrow(gterms)) {
  gene_terms <- str_split(gterms[row,"GOs"], ",", simplify = FALSE)[[1]]  
  gene_id <- gterms[row, "query_name"][[1]]
  tmp <- data.frame(GID = rep(gene_id, length(gene_terms)),
                    GO = gene_terms,
                    EVIDENCE = rep("IEA", length(gene_terms)))
  gene2go <- rbind(gene2go, tmp)
} 

#####STEP4-1  挑出query_name与KEGG注释信息
gene2ko <- egg %>%
  dplyr::select(GID = query_name, KO = KEGG_ko) %>%
  na.omit()

####STEP4-2  得到pathway2name, ko2pathway
if(F){
  # 需要下载 json文件(这是是经常更新的)
  # https://www.genome.jp/kegg-bin/get_htext?ko00001
  # 代码来自:http://www.genek.tv/course/225/task/4861/show
  library(jsonlite)
  library(purrr)
  library(RCurl)
  
  update_kegg <- function(json = "ko00001.json") {
    pathway2name <- tibble(Pathway = character(), Name = character())
    ko2pathway <- tibble(Ko = character(), Pathway = character())
    
    kegg <- fromJSON(json)
    
    for (a in seq_along(kegg[["children"]][["children"]])) {
      A <- kegg[["children"]][["name"]][[a]]
      
      for (b in seq_along(kegg[["children"]][["children"]][[a]][["children"]])) {
        B <- kegg[["children"]][["children"]][[a]][["name"]][[b]] 
        
        for (c in seq_along(kegg[["children"]][["children"]][[a]][["children"]][[b]][["children"]])) {
          pathway_info <- kegg[["children"]][["children"]][[a]][["children"]][[b]][["name"]][[c]]
          
          pathway_id <- str_match(pathway_info, "ko[0-9]{5}")[1]
          pathway_name <- str_replace(pathway_info, " \\[PATH:ko[0-9]{5}\\]", "") %>% str_replace("[0-9]{5} ", "")
          pathway2name <- rbind(pathway2name, tibble(Pathway = pathway_id, Name = pathway_name))
          
          kos_info <- kegg[["children"]][["children"]][[a]][["children"]][[b]][["children"]][[c]][["name"]]
          
          kos <- str_match(kos_info, "K[0-9]*")[,1]
          
          ko2pathway <- rbind(ko2pathway, tibble(Ko = kos, Pathway = rep(pathway_id, length(kos))))
        }
      }
    }
    
    save(pathway2name, ko2pathway, file = "kegg_info.RData")
  }
  
  update_kegg(json = "ko00001.json")
  
}

######STEP5  利用GO将gene与pathway联系起来,然后挑出query_name与pathway注释信息
load(file = "kegg_info.RData")
colnames(ko2pathway) <- c("KO","Pathway")
colnames(gene2ko) <- c("GID","KO")
gene2ko_1 <- gene2ko %>% separate_rows("KO",sep=",")
gene2ko_2 <- cbind(gene2ko_1[,1],as.data.frame(substr(gene2ko_1[,2],4,9)))
colnames(gene2ko_2) <- c("GID","KO")

gene2pathway <- gene2ko_2 %>% left_join(ko2pathway, by = "KO") %>% 
  dplyr::select(GID, Pathway) %>%
  na.omit()

######STEP6  制作自己的Orgdb
# 查询物种的Taxonomy,例如要查sesame
# https://www.ncbi.nlm.nih.gov/taxonomy/?term=sesame
tax_id = "XXX"
genus = "XXX" 
species = "XX "
library(AnnotationForge)

makeOrgPackage(gene_info=gene_info,
               go=gene2go,
               ko=gene2ko,
               pathway=gene2pathway,
               version="0.0.1",
               outputDir = ".",
               tax_id=tax_id,
               genus=genus,
               species=species,
               goTable="go",
               maintainer = "[email protected]>",
               author = "XXX")
X.orgdb <- str_c("org.", str_to_upper(str_sub(genus, 1, 1)) , species, ".eg.db", sep = "")

你可能感兴趣的:(转录组分析(11) - GO/KEGG富集分析(1))