- 人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程
m0_74824592
面试学习路线阿里巴巴人工智能架构
文章目录一、架构介绍GPU算力平台概述优势与特点二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置三、创建实例实例创建步骤镜像选择与设置四、连接实例SSH连接方法远程桌面配置一、架构介绍GPU算力平台概述一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIAGPU选择,适用于机器学习、人
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- 语音与自然语言处理(NLP):智能交互的核心技术
给生活加糖!
热门知识自然语言处理交互人工智能
随着人工智能(AI)技术的飞速发展,语音识别与自然语言处理(NaturalLanguageProcessing,NLP)成为了智能交互系统的核心技术。它们不仅改变了人们与计算机、设备的交互方式,也推动了众多行业的革新。从智能助手(如苹果的Siri、亚马逊的Alexa)到机器翻译、自动客服系统,语音和NLP技术正逐步融入日常生活,改善我们与数字世界的沟通方式。一、什么是语音识别与自然语言处理(NLP
- 基于深度学习YOLOv10的PCB板缺陷检测系统(附完整资源+PySide6界面+训练代码)
人工智能_SYBH
深度学习YOLO人工智能目标检测python
引言:在现代制造业中,电子元件和PCB(印刷电路板)是非常重要的基础设施。PCB缺陷检测是生产过程中至关重要的一步。传统的缺陷检测方法主要依靠人工检查,这不仅效率低,而且容易受到人眼疲劳的影响。随着深度学习技术的不断发展,基于深度学习的自动化缺陷检测已成为研究的热点,尤其是在计算机视觉领域。YOLO(YouOnlyLookOnce)系列算法凭借其高速和高精度的优势,成为了目标检测领域的佼佼者。本文
- DeepSeek 混合专家(MoE)架构技术原理剖析
计算机学长
通用大语言模型人工智能架构
DeepSeek混合专家(MoE)架构技术原理剖析在人工智能快速发展的当下,大规模语言模型不断突破创新,DeepSeek混合专家(MoE)架构脱颖而出,成为业内关注焦点。本文将深入剖析其技术原理,为大家揭开它的神秘面纱。一、MoE架构概述(一)基本概念混合专家(MixtureofExperts,MoE)架构,简单来说,就像是一个专家团队。在这个团队里,每个专家都是一个小型神经网络,各自擅长处理特定
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- Linux编程:嵌入式ARM平台Linux网络实时性能优化
橘色的喵
Linux性能优化功能优化arm开发linux网络实时性能优化内核优化
文章目录0.概要1.时钟周期与网络性能的权衡时钟周期(ClockPeriod)**优化策略:****副作用:**2.网络中断优化**问题:****优化策略:****副作用:**3.网络协议栈优化**优化策略:****副作用:**4.禁用内存页面交换(禁用Swap)为什么禁用Swap?**禁用Swap配置:****副作用:**5.配置`swappiness`为0**如何设置`swappiness`为
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 深入理解TensorFlow中的形状处理函数
SEVEN-YEARS
tensorflow人工智能python
摘要在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_shape_list、reshape_to_matrix、reshape_from_matrix和assert_rank,并通过具体的代码示例来展示它们的使用方法。1.引言在深
- 本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
Katie。
人工智能技术发展aideepseek人工智能人工智能大模型
前言随着人工智能技术的迅猛发展,大语言模型(LLM)在多个行业中的应用日益广泛,从自然语言处理、内容生成到智能客服、医疗诊断等领域,AI正在深刻改变传统的工作方式和业务流程。DeepSeek作为一家新兴的AI公司,凭借其高效的AI模型和开源的优势,迅速在竞争激烈的AI市场中脱颖而出。其模型不仅在性能上表现出色,还通过开源策略吸引了大量开发者和企业的关注,形成了一个活跃的社区生态。然而,随着AI技术
- 数字内容体验未来趋势:五大平台横向对比与深度解析
清风徐徐de来
其他
内容概要当前,企业数字化转型的核心战场正逐步向数字内容体验的精细化运营转移。随着用户行为碎片化与需求多元化趋势加剧,AI驱动的智能推荐系统、基于数据决策的动态优化能力,以及跨渠道的品牌一致性维护,已成为衡量内容平台竞争力的三大核心维度。本文将围绕这三大支柱,通过横向对比主流平台的技术架构与落地实践,揭示未来数字内容体验的演进方向。首先,AI驱动不仅改变了内容分发的效率,更通过深度学习算法实现用户行
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- SpringBoot整合H2并使用Flyway管理数据库版本
程序猿Ryan
springbootspringboot
SpringBoot整合H2并使用Flyway管理数据库版本一、H2数据库简介1、H2数据库是一个开源的关系型数据库。H2是一个嵌入式数据库引擎,采用java语言编写,不受平台的限制,同时支持网络版和嵌入式版本,有比较好的兼容性,支持相当标准的sql标准,支持集群2、提供JDBC、ODBC访问接口,提供了非常友好的基于web的数据库管理界面二、H2数据库连接方式1、以嵌入式(本地)连接方式连接H2
- SaaS+AI工具推荐:最适合智能化转型的解决方案
saas
不论是传统软件还是SaaS,其核心目标始终如一——帮助企业解决问题、提升效率。然而,随着技术的飞速发展,SaaS正在超越传统模式,尤其是在与AI(人工智能)的深度融合中展现出了强大的潜力。这种“智能化”的转型不仅让企业获得了更具针对性和效率的服务,还让解决问题的方式更加灵活和高效。下面我们将从“更好的解决方案”和“智能化技术应用”两个层面,探讨SaaS在企业问题解决中的新路径。SaaS+AI:智能
- 第2节课:深度学习基础python代码
Lips611
李哥深度学习python深度学习神经网络
目录编译环境:代码:文件:ds_0.py小结:python声明不需要定义,整型和浮点型都是直接给予值,字符串的[-2]代表是列表倒数的某值;同一列表里面可以有各种类型的变量;哈希表的键值对在打印时是调用字典[key],然后输出对应的value文件:judge_0.py小结:python相对于c语言,是将()换成空格和“:”,与此同时判断语句if和else的缩进不同对应着不同层次的判定条件,约等于“
- 宇树G1嵌入式软件架构及技术实现
爱吃青菜的大力水手
架构fpga开发机器人算法
Opensourcedatacollection:https://github.com/unitreerobotics/avp_teleoperateOpensourcelearningalgorithms:https://github.com/unitreerobotics/unitree_IL_lerobotOpensourcedatasetsandmodels:https://hugging
- 深度学习在蛋白质-蛋白质相互作用(PPI)领域的研究进展(2022-2025)
AndrewHZ
深度学习人工智能transformer算法科技
一、蛋白质-蛋白质相互作用(PPI)的定义与生物学意义蛋白质-蛋白质相互作用(Protein-ProteinInteraction,PPI)是指两个或多个蛋白质通过物理结合形成复合物,进而调控细胞信号传导、代谢、免疫应答等生命活动的过程。PPI是生物体内复杂功能网络的核心,例如酶与底物的结合、抗体与抗原的识别、受体与配体的信号传递等均依赖于此。据估计,人类蛋白质组中约80%的功能通过PPI实现,其
- DeepSeek 引领的 AI 范式转变与存储架构的演进
星辰@Sea
人工智能其他人工智能
引言在过去的几十年中,人工智能(AI)技术经历了翻天覆地的变化,从最初的符号主义到连接主义,再到现在的深度学习,每一次技术革新都推动了AI能力的显著提升。而在这场变革中,DeepSeek作为一股不可忽视的力量,正在引领AI范式的转变,并深刻影响着存储架构的发展。在这篇博客中,我们将深入探讨DeepSeek如何推动AI范式的转变,以及这种转变对存储架构带来的深远影响。通过分析当前AI技术的发展趋势,
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- sqlite数据库
SickeyLee
Android项目总结数据库sqliteandroid
一、什么是sqlite数据库SQLite,是一款轻型的数据库,它的设计目标是嵌入式的,而且已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了。它能够支持Windows/Linux/Unix等等主流的操作系统,同时能够跟很多程序语言相结合,同样比起Mysql、PostgreSQL这两款开源的世界著名数据库管理系统来讲,它的处理速度比他们都快。1、简单,无
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用spring自然语言处理
引言在当今的人工智能领域,深度学习技术已经成为了推动技术进步的核心动力之一。DeepSeek作为一个先进的深度学习框架,旨在为开发者和研究人员提供一个高效、灵活且易于扩展的平台,以便于他们能够快速地实现和部署各种深度学习模型。本文将深入探讨DeepSeek框架的核心架构、基础应用以及如何通过代码实现一个简单的深度学习模型。DeepSeek框架概述DeepSeek框架的设计理念是简洁而强大。它提供了
- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb