- 24 优化算法
Unknown To Known
动手学习深度学习算法
目录优化和深度学习深度学习中的挑战局部最小vs全局最小鞍点(saddlepoint)梯度消失小结凸性(convexity)凸集凸函数(convexfunction)凸函数优化凸和非凸例子小结梯度下降(gradientdescent)1、梯度下降算法是最简单的迭代求解算法2、学习率(learningrate)小结随机梯度下降(stochasticgradientdescent)小结小批量随机梯度下降
- 机器学习中梯度下降法的缺点
华农DrLai
人工智能机器学习逻辑回归深度学习大数据
机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点:1.局部最小值和鞍点局部最小值问题:对于非凸函数,梯度下降法可能会陷入局部最小值,而不是全局最小值。这意味着算法可能找到一个看似最优的点,但实际上在整个参数空间中存在更好的解。鞍点问题:在高维空间中,鞍点(梯度为零,但既非局部最小值也非局部最大值的
- 证明逻辑回归的目标函数是凸函数
Longlongaaago
机器学习机器学习算法逻辑回归
证明逻辑回归的目标函数是凸函数参考:https://zhuanlan.zhihu.com/p/76639936假设有训练数据D={(x1,y1),...,(xn,yn)}D=\{(\mathbf{x}_1,y_1),...,(\mathbf{x}_n,y_n)\}D={(x1,y1),...,(xn,yn)},其中(xi,yi)(\mathbf{x}_i,y_i)(xi,yi)为每一个样本,而且x
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- 机器学习入门之基础概念及线性回归
StarCoder_Yue
算法机器学习学习笔记机器学习线性回归正则化人工智能算法数学
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
- 03 凸优化理论-凸函数
Jay Morein
优化理论与随机控制算法
03凸函数目录3.1凸函数的定义、性质(凸函数的判定)、示例3.2保凸运算3.4拟凸函数3.5对数凸函数3.3共轭函数3.6关于广义不等式的凸性3.1凸函数的定义、性质和例子(一)凸函数的定义&扩展值延伸3.1.1定义Def1凸函数的定义、几何含义定理1:仿射函数等价于既凸又凹函数。定理2(凸性由函数在直线上的性质刻画)*:凸函数的充要条件是与其定义域相交的任何直线上都是凸的。(可以将函数限制在直
- 岭回归公式推导
吐泡泡的柠檬
回归
对于最小二乘问题加入常数项,令变量代换,可以写成其中θ是拟合系数。加入常数项,同时,希望拟合参数θ尽可能小,以降低预测值的敏感程度,可得:注:结合起来理解:目标函数是一个凸函数,对目标函数求导,导数等于0的点是最优点:注意:岭回归的推导与介绍,比较全面:https://www.jianshu.com/p/1677d27e08a7
- Analysis of Learning from Positive and Unlabeled Data
zealscott
PUlearning论文阅读。本文从基本的分类损失出发,推导了PU的分类问题其实就是Cost-sensitiveclassification的形式,同时,通过实验证明了如果使用凸函数作为lossfunction,例如hingeloss会导致错误的分类边界(有bias),因此需要使用例如ramploss之类的凹函数。同时,论文还对先验存在偏差的情况进行了讨论,说明了如果样本中大部分都是正样本,那么就算
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 凸优化问题:基础定义
TensorME
数学理论凸优化
“一旦将一个实际问题表述为凸优化问题,大体上意味着相应问题已经得到彻底解决,这是非凸的优化问题所不具有的性质。”——《译者序》“事实上,优化问题的分水岭不是线性与非线性,而是凸性与非凸性”——Rockafellar1什么是凸优化什么是凸优化?抛开凸优化中的种种理论和算法不谈,纯粹的看优化模型,凸优化就是:1、在最小化(最大化)的要求下,2、目标函数是一个凸函数(凹函数),3、同时约束条件所形成的可
- 优化算法--李沐
sendmeasong_ying
深度学习算法人工智能深度学习
目录1.1梯度下降1.2随机梯度下降1.3小批量随机梯度下降1.4冲量法1.5Adam损失值也就是预测值与真实值之间的差值是f(x),x是所有超参数组成的一条向量,c是可以限制的,比如说权重大于等于0。使用迭代优化算法求解一般只能保证找到局部最小值,因为一到局部最小的地方,用梯度下降算法的话此时的梯度就已经等于0了。凸集的意思就是在一个区域里面找一根线,这条线的任意一个点都在这个区域里面。凸函数最
- 机器学习_通过梯度下降找到最佳参数
you_are_my_sunshine*
机器学习机器学习人工智能
文章目录训练机器要有正确的方向凸函数确保有最小损失点梯度下降的实现学习速率也很重要训练机器要有正确的方向所谓训练机器,也称拟合的过程,也就是确定模型内部参数的过程。具体到线性模型,也就是确定y’=wx+b函数中的w和b。对于线性回归来说,针对损失函数的梯度下降(gradientdescent)方法可以使猜测沿着正确的方向前进,因此总能找到比起上一次猜测时误差更小的w和b组合。梯度下降可以说是整个机
- 最优化理论与方法复习(6)---凸集和凸函数
冒冒菜菜
最优化理论与方法最优化理论与方法凸集凸函数期末复习
文章目录1.凸集1.1定义1.2例题2.凸函数2.1判断方式2.2例题1.凸集1.1定义 设SSS为nnn维欧式空间RnR^nRn一个集合,对于任意的X(1)X^{(1)}X(1),X(2)∈SX^{(2)}∈SX(2)∈S,及每个实数λ∈[0,1]λ∈[0,1]λ∈[0,1],有λX(1)+(1−λ)X(2)∈SλX^{(1)}+(1-λ)X^{(2)}∈SλX(1)+(1−λ)X(2)∈S,则
- 【笔记】认识凸优化
假装有头像
笔记
凸优化凸优化是一类特殊的数学优化问题,其基本思路是凸优化的基本思路是通过利用凸性质,将优化问题转化为在凸集上定义的凸函数的最优化问题,从而能够借助凸优化的理论和算法来高效求解。凸优化问题相对于一般的优化问题更易于求解以下是凸优化的基本思路和特点:凸集:凸优化中的关键概念之一是凸集。凸集是一个具有凸性质的集合,即对于集合中的任意两点,连接它们的线段仍然在集合内部。凸优化通常涉及到在凸集上定义的优化问
- 近似点梯度法
格兰芬多_未名
凸优化算法最优化
最优化笔记——ProximalGradientMethod最优化笔记,主要参考资料为《最优化:建模、算法与理论》文章目录最优化笔记——ProximalGradientMethod一、邻近算子(1)定义二、近似点梯度法(1)迭代格式(2)迭代格式的理解(3)收敛性分析三、FISTA算法(1)迭代格式(2)收敛性分析参考资料一、邻近算子(1)定义定义(邻近算子)对于一个凸函数hhh,定义它的邻近算子(
- 吴恩达机器学习笔记-Logistic回归模型
Carey_Wu
回归函数在逻辑回归模型中我们不能再像之前的线性回归一样使用相同的代价函数,否则会使得输出的结果图像呈现波浪状,也就是说不再是个凸函数。代价函数的表达式之前有表示过,这里我们把1/2放到求和里面来。这里的求和部分我们可以表示为:很显然,如果我们把在之前说过的分类问题的假设函数带进去,即,得到的结果可能就是上述所说的不断起伏的状况。如果这里使用梯度下降法,不能保证能得到全局收敛的值,这个函数就是所谓的
- 协方差矩阵自适应调整的进化策略(CMA-ES)
努力发光的程序媛
CMA-ES黑盒优化协方差矩阵自适应
关于CMA-ES,其中CMA为协方差矩阵自适应(CovarianceMatrixAdaptation),而进化策略(Evolutionstrategies,ES)是一种无梯度随机优化算法。CMA-ES是一种随机或随机化方法,用于非线性、非凸函数的实参数(连续域)优化。作者NikolausHansen于2016年在MachineLearning上发布了关于CMA-ES详细教学。原文链接:TheCMA
- 机器学习_捕捉函数的变化趋势(凸函数)
you_are_my_sunshine*
机器学习机器学习人工智能
文章目录连续性是求导的前提条件通过求导发现y如何随x而变凸函数有一个全局最低点机器学习所关心的问题之一捕捉函数的变化趋势,也就是标签(y)是如何随着特征字段(x)而变化的,这个变化趋势是通过求导和微分来实现的。连续性是求导的前提条件具有连续性的函数,y值随x值的变化是连贯不间断的。并不是所有函数都具有连续性,像上面提到的阶跃函数从-1到1的跃迁明显就不具有连续性。通过求导发现y如何随x而变导数是定
- 贝叶斯优化的基本流程
今天也要加油丫
机器学习机器学习
贝叶斯优化的基本流程假设已知一个函数()的表达式以及其自变量的定义域,现在,我们希望求解出的取值范围上()的最小值,你打算如何求解这个最小值呢?1我们可以对()求导、令其一阶导数为0来求解其最小值函数()可微,且微分方程可以直接被求解2我们可以通过梯度下降等优化方法迭代出()的最小值函数()可微,且函数本身为凸函数3我们将全域的带入()计算出所有可能的结果,再找出最小值函数()相对不复杂、自变量维
- Csiszár divergences
Nightmare004
数学概率论凸优化
Csiszárdivergences熵函数熵函数(entropyfunction)φ:R++→R+\varphi:\mathbb{R}_{++}\to\mathbb{R}_{+}φ:R++→R+,他是凸函数,正的(?),下半连续函数,并且φ(1)=0\varphi\left(1\right)=0φ(1)=0φ∞′=limx→∞φ(x)x\varphi_{\infty}^{\prime}=\lim
- 凸优化Convex Optimization期末复习重点和考试笔记(一)凸集+凸函数
Q小Q琪
学习机器学习笔记人工智能
最近被凸优化考试整疯了,梳理出来一些复习重点和知识点笔记,希望能够帮助到有缘人!总共有四章重点,我分两个博客放哈~第一部分:凸集第二部分:凸函数以上是凸集和凸函数两章的期末复习笔记。
- 凸优化Convex Optimization期末复习重点和考试笔记(二)凸优化+对偶
Q小Q琪
学习机器学习人工智能笔记
接博客【凸优化ConvexOptimization期末复习重点和考试笔记(一)凸集+凸函数】第三部分:凸优化第四部分:对偶几种典型的凸函数以上就是凸优化和对偶函数部分,以及几种常见的凸函数。我们就考到这所以后面的没有整理,自己整理的有些地方可能有小错,希望大佬批评指正
- 【凸优化】【长链剖分】【2019冬令营模拟1.8】tree
YiPeng_Deng
题解凸优化长链剖分DP二分树形DP学习小计凸优化长链剖分树形DP预留数组空间二分
PROMBLEM给你一棵树,你需要在树上选择恰好m条点不相交的、长度至少为k的路径,使得路径所覆盖的点权和尽可能大。求最大点权和。数据保证有解。SOLUTION这是一道综合的题目,考察凸优化、长链剖分、树形DP、以及关于数组空间的优化首先引进凸优化凸优化就是关于答案可以表示成一个凸函数f(x),x是题目给出的参数,并且这个函数的斜率成下降的趋势(反过来也可以)假设我们已知的函数的最大值是f(m’)
- Convex Formulation for Learning from Positive and Unlabeled Data
zealscott
UnbiasedPUlearning.该论文在之前PUlearning中使用非凸函数作为loss的基础上,对正类样本和未标记样本使用不同的凸函数loss,从而将其转为凸优化问题。结果表明,该loss(doublehingeloss)与非凸loss(ramp)精度几乎一致,但大大减少了计算量。IntrodutionBackground论文首先强调了PU问题的重要性,举了几个例子:Automaticf
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- Convex optimization 3.1 --- 凸优化问题 part1
expectmorata
#CVXMATHoptimization
1introduction在前面两个章节,回顾了凸集、凸函数、凸集和凸函数联系。从这章开始认识凸优化问题。其中,关于各种典型的类别的凸优化问题,主要参考了[2]。2凸优化问题2.1优化问题的标准形式2.1.1优化问题的最优解优化问题的最优解解集可能存在两种极端情况2.1.2优化问题的解集可行解如果xix_ixi满足fi(x)、hi(x)f_i(x)、h_i(x)fi(x)、hi(x),则称xix_
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 【最优化方法】凸优化基本概念
撕得失败的标签
最优化方法线性代数最优化方法凸优化
文章目录凸优化(ConvexOptimization)凸集(ConvexSet)凸集合的运算(OperationsonConvexSets)凸函数(ConvexFunction)凸优化问题(ConvexOptimizationProblem)凸优化(ConvexOptimization)凸优化问题具有许多重要的性质,使得其在理论和实践中都得到广泛应用。这些性质包括全局最优解的存在性、局部最优解即为
- 【最优化方法】凸二次优化
撕得失败的标签
最优化方法线性代数最优化方法凸二次优化海森矩阵Hessian
文章目录凸函数的判别凸二次优化海森矩阵(Hessianmatrix)判断函数凹凸性示例凸函数的判别设S⊂RnS\subsetR^nS⊂Rn是非空开凸集,f:S→Rf:S\rightarrowRf:S→R可微,则(1)fff是SSS上的凸函数,当且仅当f(x2)⩾f(x1)+∇f(x1)T(x2−x1),∀x1,x2∈Sf(x_2)\geqslantf(x_1)+\nablaf(x_1)^T(x_2
- Chapter1极限、导数、凸函数
桑之未落0208
数学基础机器学习大数据
目录一.O(n)和o(n)二.极限三.求导定义四.求导方法五.导数的应用:费马定理六.导数的应用:函数逼近七.导数的应用:泰勒展开八.凸函数一.O(n)和o(n)1.,其中O指的是Order阶。多项式阶——为2项阶:使得当时,,其中M是常数举例一:,令M=2,为任意常数,使得当时,总有成立。举例二:,令M=2,,使得当时,总有成立。2.,指的是的阶是严格小于的阶的。(与极限相关):使得当时,举例一
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交